Journal of Global Optimization 10: 229-256, 1997. 229
© 1997 Kluwer Academic Publishers. Printed in the Netherlands.

Generalized Convex Multiplicative Programming
via Quasiconcave Minimization

BRIGITTE JAUMARD
Ecole Polytechnique de Montréal, GERAD & Département de Mathématiques et de Génie
Industriel, C.P. 6079, succ. Centre-ville, Montréal (Québec) H3C 3A7, Canada

CHRISTOPHE MEYER
Ecole Polytechnique de Montréal, Département de Mathématiques et de Génie Industriel, C.P.
6079, succ. Centre-ville, Montréal (Québec) H3C 3A7, Canada

HOANG TUY
Institute of Mathematics, P.O. Box 631, Bo Ho, Hanoi, Vietnam.

(Received: 12 April 1995; accepted: 20 March 1996)

Abstract. We present a new method for minimizing the sum of a convex function and a product
of k nonnegative convex functions over a convex set. This problem is reduced to a k-dimensional
quasiconcave minimization problem which is solved by a conical branch-and-bound algorithm.
Comparative computational results are provided on test problems from the literature.
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1. Introduction

We consider the optimization of Generalized Convex Multiplicative Programming
problems of the form:

k
(GOMP)  min (f(:v) = fo(a) + [T fi<x>>
=1

where & > 2, the functions f; are convex on R"(; = 0,1,...,k), and G isa
nonempty compact convex subset of R” such that:

VzeG  filz)>0 i=12,...,k (1)

Thisproblem has many applications, e.g., in microeconomics[5], VLS| chipdesign
[19], bond portfolio optimization [8] and multiobjective programming [4].

It is well known (see e.g., Konno and Kuno [10]) that the product of convex
functions need not be (quasi)convex thus the objective function f of problem
(GCM P) may have many local minima. Moreover, except if the function fp is
constant and the functions f;(i = 1,2, ..., k) are linear, the objective function is
not quasiconcavein general.
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Over the last five years, several particular cases of problem (GCM P) have
been investigated, especially when k& = 2.

The Linear Multiplicative Programming problem (i.e., fo constant and f1, f>
linear) has been studied by Konno and Kuno [10] who proposed a parametric
simplex method to solveit. A slightly more general method, taking advantage of a
low degree of nonlinearity, hasbeen suggested by Tuy and Tam[29]. The parametric
simplex approach has then been generalized by Konno et al. [14] to solve aspecial
case of the General Linear Multiplicative Programming problem (i.e., fo quadratic
and f1, f» linear). Recently, Schaible and Sodini [24] used this same approach (but
with different optimality conditions) for the case fo, f1, f2 linear. Two methods
have been proposed for the case where fj is convex and f1 and f» arelinear: (i) a
discrete approximation algorithm by Konno and Kuno [9]; (ii) abranch-and-bound
algorithm by Muu and Tam [21] where the branching takes place in an interval
of R and the bounding corresponds to a relaxation. Moreover, Kuno and Konno
[15] designed a branch-and-bound method using an underestimating function for
problem (GC' M P) where k = 2 (which could be easily extended for & = 3).

More recently, Konno et al. [12] considered the problem of minimizing the sum
of p productsof two convex functions, whichincludesthe problem (GC M P) when
k = 2 asaparticular case. They proposed a reduction to a concave minimization
problem with 2p variables, which they solved by an outer approximation method.

Problems with up to 350 linear constraints and 300 variables have been solved
when fo, f1, f» are linear by Konno et al. [14] and up to 130 linear constraints
and 100 variables when fj is a convex quadratic function and f1, f> are linear by
Konno and Kuno [15].

For k greater than 2, only the Convex Multiplicative Programming problem
(fo = 0) hasbeen considered. Thoai [26] proposes a reduction to the minimization
of a quasiconcave function depending only on & variables. This last problem is
then solved by an outer approximation method. Kuno et al. [17] propose an-
other reduction to a concave minimization problem with k variables, the objective
function value of which is determined by solving a convex minimization problem.
Their computational experiments show that the resulting algorithm is reasonably
efficient for & < 4.

Related problems such as minimization of fractional functions or minimization
with a multiplicative constraint can be found in [9, 13, 14, 16, 18, 22, 23, 25, 27,
30]. For arecent review on multiplicative programming, see Konno and Kuno [11].

The purpose of this paper is to design a new agorithm to solve problem
(GCMP). It is organized as follows. In Section 2, we convert (GCM P) to a
guasiconcave minimization problem in a k-dimensional space. New bounds and
branchings are discussed in Section 3. In Section 4, the results of the previous sec-
tion are embedded in aconical branch-and-bound algorithm for solving low dimen-
sional quasiconcave minimization problems. Computational results are reported in
Section 5.
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2. Reduction to Quasiconcave Minimization

In this section, we show how to reduce the generalized convex multiplicative
problem (GC'M P) to a quasiconcave minimization one when functions f;(i =
1,2,...,k) arepositive. It is a generalization of the reduction to a concave mini-
mization problem, proposed by Kuno et al. [17], of the minimization of a product
of k convex functions, i.e., problem (GC M P) when fy is aconstant function.

Whenever discussing the particular case where fo is a constant function, we
will assume, without loss of generality, that fo isthe null function, i.e., fo(z) =0
foralz € G.

We will also assume that:

Vee G fi(x) >0 i=212...,k. 2

This condition is not restrictive if we are interested in e-optimal solutions (i.e.,
points with values differing from the optimal one by lessthan ¢ > 0) of problem
(GCMP).Indeed, let f betheglobal minimum of f(x) over G with the additional
constraint Hle fi(x) = 0. We can then show that either f isan e-optimal value of
problem (GCM P), or al optimal solutions of problem (GCM P) belong to the
convex set G' = G N {x : fo(x) < f —e}. Moreover, we have [T¥_, f:(x) > Ofor
alz e G'.

Note first that the value f can be obtained through the solution of & convex
problems:

(P)) fi=min{fo(z): fi(z) <Oandz € G}

fori=1,2,...,ki.e, f=min_1o  fi.

Let =* be an optimal solution of problem (GC'M P) with value f*. If f isnot
ane-optimal value of problem (GCM P) wehave f — f* > €. Since fo(z*) < f*,
it followsthat fo(z*) < f — ¢, hencez* € G'.

Now let 2’ be a point of G’ and assume that there exists an index j such that
fj(z") = 0. Then z’ isafeasible solution of problem (P;), hence fo(z') > f; > f.
Thusz’ doesnot satisfy theconstraint fo(z) < f—e of G, whichisacontradiction.
Obviously, G’ is still acompact convex set.

Consequently, an e-optimal solution of problem (GCM P) with non negative
functions can be easily obtained by comparing f with the optimal (or an e-optimal)
solution of problem (GC M P) with positive functions.

LetH = {t € RE : [T¥_,¢; = 1} denote the portion of hyperbola of equation
[1i_, #; = 1 contained in the positive orthant and 7 = {t € RE : [, ¢; > 1} be
the (convex) set delimited by .

LEMMA 1. For any positive real numbers f1, fo, ..., fr we have:
k

(1 i
ggg?(E;fﬁi) :z':Hlfi, ©)
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and the minimum point ¢* of (3) satisfies

PN -
tifi=tfa=--=tifr = (Hﬁ) : 4

i=1
Proof. Itfollowseasily from Kuhn—Tucker conditions. Indeed, associating mul-
tiplier po with the constraint

k

[[ti=1 ©)
i=1
and multiplier 1; with the non negativity constraint
tj >0, (6)
forj =1,2,...,k, the Karush—-Kuhn-Tucker conditions lead to:
1k k-1 k
[ (ngﬂ%) —po J[ ti—w; =0 (7
i=1 i=1,i#]
pitj = 0 (8)
pj >0 ©)

foral j=1,2,... k.

Note that since none of the non negativity constraints can be satisfied as equal -
ities, all points satisfying constraints (5) and (6) are regular.

Multiplying equation (7) by ¢;, and using (5) and (8), we obtain

1k k-1 k
tif; (EZfitz') =po[[ti+uitj=po j=12,... k. (10)
=1 =1
Summing the k equalities of (10), we get
k

1 k
o = (E > fﬂ%’) : (1)
=1
Since the coefficients f; and the variables t; are positive, %Zle fit; cannot be

equal to 0. Thus, substituting y by its value obtained in (11) in equation (10), it
follows

1 ,
tjfj=EZfiti i=12,...,k. (12)
=1

Making the product of these & last equalities, we obtain

k 1k k
IIsi= (EZfﬂfz)
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which, together with equalities (12), completes the proof. [ |

For every t € R: , define the function ¢ as:

N k
p(t) = min {fo(iv) + (% Zh‘fz‘(@) } : (13)
i=1

Sincethefunctions f;(i = 1,2, ..., k) are convex, the positive linear combination

% Zf:l tif; is aso convex. Since y — y* defines a nondecreasing and convex
k

functionon [0, +o0) and since fo isalso convex, it followsthat fo-+ (% Sk tifi)

isconvex. Thusthe value of () can be determined by solving a convex program.
Other properties of ¢ are given below.

LEMMA 2. The function ¢ is quasiconcave, continuous, increasing and, if fo is
the null function, homogeneous of degree k, on any compact set D of ]Riﬁ .

Proof. For any fixed =z € G,t — Zletifi(x) is an affine function. On
the other hand, the function y — ¢* is nondecreasing for y € [0, +o0), hence

k
(Zf:l tifi(x)) is a quasiconcave function of ¢ (see, e.g., Avriel et al. [2, p. 57
Proposition 3.2]). It follows that, for any fixed x € G and any v € R the set

L k
Ci(y) = {te]Rﬁ ; (%thi(@) Zv—fo(f)}
i=1

is convex. We then deduce that for any v € Rthe set {t € RY : p(t) > v} =
Nzeq Cz(7y) is convex. This proves the quasiconcavity of ¢(t).
k
Let ¢(t, ) = fo(z) + (% sk, tifi(x)) . Sincethe f;,i = 0,1,...,k are
continuous and since G is compact, v is uniformly continuousover D x G. Thus,
for any fixed e > O, there exists § > 0 such that

I(#,2") = (", 2") | < 6 = |l ") — (", 2")|| <e.

Now let ¢ and " be such that ||t — ¢"|| < 4. Let ' € argminy(t') and =" €
argmino(t") (these points exist since G is a non-empty compact set).
On one hand,

() = @(t") = miny(t', ) —ming (", z) < (', 2") —p(t",2") < e

(thelast inequality holdssince ||(¢', ") — (¢",z")|| = ||’ — t"|| < §).
On the other hand,

o) = (t") > P(t', o)) — (", a') > —e.
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Thus |p(t') — ¢(¢")| < e which proves the continuity of . Now, let =} be the
optimal solution of the convex program corresponding to ¢(t). For any ¢ > t' >
0,t # t' we have

k k

o(t) = folzy) + ( thzxt> > fo(zy) + ( thzxt> > ('),

hence p(t) isincreasing.
The homogeneity property istrivial. [ |

THEOREM 3. Under assumption (2), the problem (GC M P) is equivalent to the
guasiconcave minimization problem

(QCM)  miny(t)

in the following sense: if £* is an optimal solution of problem (QC M) and if z* is
a corresponding point of G with respect to (13), then z* is an optimal solution of
problem (GC M P). Moreover, the following relations hold:

1

k %
(H fj(f"))
« _ \u=1 .
£ = o 1,2,....k (14)
f(z®) = p(t"). (15)

Conversely, if x* isan optimal solution of problem (GC' M P), thevaluet* deduced
fromthe relation (14) correspondsto an optimal solution of problem (QC M) and
the relation (15) holds.

Proof. Let z* and f* respectively bethe optimal solution and value of problem
(GCMP), and t* and ¢* be the optimal solution and value of problem (QC'M).

Let 24« beapoint of G suchthat p(t*) = fo(xs) + ( SE Lt fz(xt*))k (such
apoint exists by definition of ¢). Then, by using Lemma 1,

k k
o' = plt") = Joloe) + (% Zt;‘fmt*))
k

> fo(we) -|-m|n< Zt fi(ze) > = f(w) > f*. (16)

Now, let ¢, be the point obtained from x* by (14). Then

Eopioy )
st = md oo+ (I000) (1545 |
i=17%

f") = (17)

*

4

IN

IN



GENERALIZED CONVEX MULTIPLICATIVE PROGRAMMING 235

where the last inequality is obtained by setting « to z*. From (16) and (17), it
followsthat f* = ¢*.

Thus fo(ze )+ (% Sk t;ffi(g:t*))k = f(z) = f*, which showsthat ;- isan
optimal solution of problem (GC M P) andthat (¢*, x4~ ) satisfies (14) (using again
Lemmal). Similarly, ¢(t,-) = ¢* which showsthat ¢~ is an optimal solution of
problem (QC'M).

It followsthat minimizing f over G isequivalent to minimizing p over .

Since ¢ is increasing (Lemma 2), we deduce that the minimum of ¢ over T
belongs to its boundary #. Since T' is a convex set, (GC' M P) is then equivalent
to the quasiconcave minimization of ¢(¢) over T'. [ |

COROLLARY 4. Let f. > 0 and £, be alower and upper bound respectively of
function f; over G for » = 1,2,... k. Let t* be an optimal solution of problem
(QCM). We have

L<ti<t i=12,...,k (18)

where

==

o+
I

o

=

[~
S,
N————
EllEY

NE S =12k

Note that if ¢; = ¢; for some: and k& > 2, the functions f;(j = 1,2,...,k) are
constant over G, thus problem (GC' M P) can be reduced to the convex program
Mingcq fo(x). Indeed,

and % =

1

|4

f; | 1 2 1
[ me) ) ()R <
L@\ (a7 =V

with the equality holding if and only if each term of the productisequal to 1, i.e,
ifij = fiforj=12,...,k.
From now on, we assumethat 0 < ¢; < #; forali € {1,2,...,k}.

3. Bounding and Branching Operations

In order to beableto designaconical branch-and-bound algorithm to solve problem
(QCM), i.e, minger (t), we study below its various features: the initialization
which includes the definition of a cone containing at least one optimal solution
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0]
Figure 1. Construction of theinitial cone (k = 2).

(Section 3.1); the rules of the subdivision (Section 3.2); the computation of lower
(Section 3.3) and upper bounds (Section 3.4).

3.1. CONSTRUCTION OF AN INITIAL CONE
Optimal solutionst* of (QC M) are contained in the k-dimensional rectangle
RO={teR:t<t<1i} (19)

wheret = (tq,tp, ..., ;) andt = (t1, t2, ..., t) aeasdefined in Corollary 4.
Let K° beafirst conevertexed at £ with edges defined by the k adjacent extreme
pointsof ¢in R. Let £/ betheintersection of the j* edge of K° with the hyperbola
H for j = 1,2,...,k. Such points always exist since on one hand ¢; > O for all
i € {1,2,...,k} andontheother hand [T*_, t; = 1%, (f,/f)* * < Lfork > 2.
We next consider K©, the cone vertexed at O with edges (0#/),j = 1,2,...,k;
see Figure 1 for anillustration when k& = 2.
Notethat for k& > 3, thehyperrectangle R%isnot alwaysincluded in the cone K°.

Indeed, consider the following example with & = 3. Assume that f. = \/23(1' =
1,2,3) and f; = \/§3(z’ =1,2,3). Thent; = 2 and?; = 3 fori = 1,2,3, and
1/ 115, ¢; = Z. It follows that

o <922> " <292> " <229>
t=(2,5,2) #=(3=>3) #=(5535=).
433 3'4’3 3’34
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Consider now the vertex t' = (t1, 72, 3) = (3, 3, 3) of RC. Itiseasy to check that

_ 2
817

which showsthat ¢’ lies outside K°.

t' (—47El 121142 + 211£3)

PROPOSITION 5. The cone K° contains the set of optimal solutions of problem
(QCM). y

Proof. We first show that ¢ belongsto K°. By definition, the points #/ lie both
onthe j** edge of K, i.e., can be written

#=t+\el (20)

where e/ isthe ;" unit vector and \; > 0, and on the hyperbola#, i.e., satisfy

Setting 7 = [T5y £; = [TE4(f,/ 7)Y, we get

1
,\j=<;_1>;j i=12... k. (21)

Combining equations (20) and (21), we deduce:
1 k
t=—Z"—> 22
ST (22)

i.e., that ¢ belongsto the cone K° (as T < 1).

As KO is convex and contains the points t1,#2, ..., t* (by definition) and ¢, it
also containsthe simplex S induced by these points.

From Corollary 4, all optimal solutions of problem (QC'M) lieon K° N . It
therefore remains to show that K°N A C S.

Lett € KON #H. It satisfies the following system of equations:

Hi’c:ltz' =1
k -
t=t+> ot —1)
j=1

with o = (a1, a2, ..., ax) > 0.
By using (20) and (21), it follows that

k

t=> <1+aj G —1>)§jej.

=1
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Since ¢t belongsto the hyperbola, we have then

1=i_ﬁlti=73_ﬁl<1+aj(;_1))27(1+j§aj(;_1))

which shqwsthat Yk ja; <1(sncel—1>0).Thust = (1-Y%, o)t +
Zle a;t, i.e., can be expressed as a convex combination of ¢ and tj =
1,2,..., k). This completes the proof. [ |

The construction of K requires the knowledge of ¢. However, in order to be able
to compute ¢, we need lower and upper bound on each function of the productin f.

Positive lower bounds f. can be easily obtained through the solution of the
following convex problems

min f;(z)

zeG
fori=1,2,...,k.
Thecomputation of upper boundsrequiresmoreeffort. If thefunction f;islinear,
an upper bound f; can be obtained by solving the following convex problem

gcréagfz( ).

If the function f; is not linear, let 3> be a simplex containing G. Without loss
of generality, we can assume that GG is contained in the positive orthant. Then a
simplex containing G can be definedas ¥ = {x € R* : 3" x; < b;x; > 0,5 =
1,2,...,n} whereb isthe optimal value of the convex program

sz

Then we can derivean upper bound f; by solving the convex maximization problem

xEG

ngfz( ).

Since Y isapolytope whose vertices can easily be computed, thislast optimization
problem can be easily solved.

3.2. SUBDIVISION

We propose to consider bisection subdivisions. We recall below the principles of
such subdivisions. The reader is referred to Horst and Tuy [7] and Tuy [28] for
more details.

Let HO be a hyperplane intersecting each edge of K©, e.g., the hyperplane of
equation Y°F_, ¢; = 1. At acurrent iteration, let K C K° be acone vertexed at the
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origin O and with & independent edges. let U = K N H° = conv{ul,v?,... u*}
be the section of K by the hyperplane H?: U is called the base of K. Let w bean
arbitrary point of U such that

k k
w=> Nu', Y N=1 N>0 (i=12..k). (23)
i=1 i=1

Let 7 = {i : \; > O}. For each i € I, define U; as the smplex of vertices
uly . ut T w,utt L uFl It is easy to verify that the set of simplices {U; :
i € I} forms apartition of the simplex U, it is called asimplicial subdivision. Let
d(U) denotethe diameter of the smplex U, i.e., the length of itslongest edge. If w
belongsto alongest edgeof U, i.e., if w = au? + (1 — a)u? with0 < o < % and
|luP — u?|| = 6(U), then the partition is called a bisection of ratio .

DEFINITION 6 (see Horst and Tuy [7, p. 135]). A simplicial subdivisionisexhaus-
tiveif any infinite sequence of nested simplices U satisfieslimy,_, , o, 6(U") = 0.

THEOREM 7 (see, e.g., Tuy [28, p. 21]). A subdivision process consisting exclu-
sively of bisectionsof ratio 0 < o < % for some fixed «, is exhaustive.

Obviously, any partition of U inducesapartition of K. If thesimplex U isbisected,
we say that the cone K is bisected. If the subdivision of U is exhaustive, we say
that the subdivision of K is exhaustive.

3.3. LOWER BOUNDS

We propose two ways to compute lower bounds: the first one appliesto the general
caseand requires k evaluations of ¢, i.e., the solution of k& convex programsin R";
the second one requires only one evaluation of ¢ but does not apply for & > 3.

3.3.1. Cutting Plane Method
The computation of thefirst lower bound is based on the following result:

PROPOSITION 8. Let K C ]R’i be a cone vertexed at O. Let H be a hyperplane
separating O from K NT andlet s7(j = 1,2,..., k) bethe intersection points of
the edges of K with H. Then

min{e(sY), (), ..., o(s")}

isalower bound of p over K NT.

Proof. Let @ be the polyhedron defined as the intersection of K with the
half-space delimited by H and not containing O. Clearly @ contains K N T.
Since ¢ is increasing, its minimum over Q is attained at conv{s?',s?,...,s"}.
As o is quasiconcave, it follows that the minimum of ¢ over ) is equa to
min{(sY), o(s%), ..., (s")}. n
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Let ¢ be apoint of . We denote by H; the hyperplane tangent to the hyperbola #
at point £. It can easily be checked that

k

ti
Hiz{tema’“:zf—zk}.

i=1"

Clearly, H; separates O from K N T, thus yields a lower bound by Proposition
8. For convenience, let us define a = (i,%,...,i). Then H; = {t € R* :
at = k}. Since the minimum of ¢ over T is attained at a point of 7, a good
criteria for selecting the hyperplane H; may be to minimize the volume of the set

S=Kn{t:at >k t; <1}.

PROPOSITION 9. A necessary condition for the hyperplane H = {t € R* : at =
k} to minimize the volume of S is

—, 1=12,...,k. (24)

Proof. Denote by H = {t € R¥ : at = 1} the hyperplane passing through the
pointst/, j = 1,2,...,k. Then S = S1\(S> U S3) where

S; = Kn{te®r :at <1},
S; = KNn{teRr :at <k},

k
ngKﬂ{te]R’“:&tgl,Hti21}.
=1

Since only the set S> depends upon the hyperplane H, minimizing the volume of
S is equivalent to maximizing the volume of S,. The vertices of this simplex are
Oand s/ = A\t with \j = 2 for j = 1,2,..., k. Thus

0 Aft Af? o 2R
Vol(S2) = v det<1 %I. ?I. 1 ]?I. )‘
= I/k|det()\1tAl )\22?2 te )\kf )|

k
_— (H Ai> |det(#272 - - - i*)|
=1
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wherev;, isaconstant for fixed k. Since|det(#, #2, . . . , #*)| doesnot depend upon a,
the hyperplane H minimizing the volume of S isobtained by solving thefollowing
problem

(VP) g
st. 1_11 =1 (25)
a>0. (26)

k
Z,@%<M>_M i=1 — 0, (=1,2,...k (27)

k
1 <H a; — 1> =0. (28)
i=1

Using (25), relation (27) gives

p Ny
= = 4=12,... k.
v(a) “ Zl at
Jf
After summation, we obtain ﬁ = 1, which concludes the proof. [ |

Note that the hyperplane that minimizes the volume of S istangent to H at a
point of K. Indeed relation (24) can be written

wheretheat’, j = 1,2,..., k are positive since the components of ¢ and ¢/ are
positive. For k = 2, such a hyperplane can be more precisely characterized (see
Figure 2 for an illustration).

COROLLARY 10. For k£ = 2, the hyperplane that minimizes the volume of S is
the hyperplane tangent to # at point ¢ = (y/#1#2, \/5t3). Moreover, if ¢ denotes
the barycentre of £ and #2, then 7 is the inter section of O with .
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t)
0
H N H
2
u
Ha
t \
> u
~ .7
A t//
t/
s u!
P Al
,” > t
//K S].
O

Figure 2. Lower bound computing (method 1).

Proof. Using relation (24) of Proposition 9, we have

1 1 Zi

a1 artt+agxty  ait? + at3
a4 ) + Blaafd + i)
B (a1t} + azt3) (a1t + ayt?)

After simplification, we obtain (1#2)a? = (£1f3)a3, i.e., (£}13)#% = (£313)#3. Since
tit; = 1 = 1t = 1343, it follows that the only positive solution is t; = 1/#1£2
and £, = |/#513. Using the equalities {113 = 1 = #23, it isthen easy to verify that

2B
b= (FE u

Considering thislast result, we define three variants for the computation of alower
bound that differ by the choice of #:
(a) t isdefined by

(b) # is the intersection with 7 of O%, where is the barycentre 15k 11 of the
points /.
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17}

O
Figure 3. Lower bound computing (method 2).

(c) t istheintersection with 4 of O, where @ is the barycentre of the points v/,
intersection of O#/ with the hyperplane H° defined in Section 3.2.

Notethat for k£ > 3, the corresponding hyperplaneswill not anymore minimize the

volume of S sincea = (i, %, - i) does not in general satisfy (24).

3.3.2. Smplicial Method

The computation of the second lower bound is valid only when k& = 2. It exploits
aparticular simplex (see Figure 3 for an illustration):

PROPOSITION 11. Let K C ]R& be a cone origined at O. Assume that its edges
intersect the hyperbola # at #* and #2 respectively. Let H; and H, be the hyper-
planes tangent to A at ! and #2 respectively. Then these hyperplanes are inter-
secting at an unique point s° € K, and a lower bound of ¢ over K N is

min{o(tY), ¢(#%), p(s°)}.

Proof. Let H be the hyperplane passing through % and 2. By convexity of
T, the half-space delimited by H and containing O contains K N #H. Since Hj
and Hj, are supporting hyperplanes, K N H is therefore included in the simplex
S defined by the hyperplanes H, H;; and Hj. It follows that alower bound of ¢
over K NH isminis p(t). ASy isquasiconcave, it is equal to the minimum of ¢
over the extreme points of S.
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These extreme points are ¢*, £ and the intersection point s° of the hyperplanes
Hp and Hp. If i = (, 1) and #2 = (8, §), the equations of the hyperplanes H;:
and Hj; are:

ﬂ-|-0132:2
o
51
— 4+ Bsp = 2.
B

Thislast system has an unique solution

o_ [ 208 2 _af g
; _<a+6’a+6>_ i T

which clearly belongsto K. |

REMARK 12. Let £° be the intersection point of Os° with the hyperbola .

Then s° = (2a +‘Zﬁ )%, On the other hand, with the above notation and with the

hyperplane of Corollary 10, it can be checked that the points s’ of Proposition 8
satisfy s/ = (%ﬁ’?)fj for j = 1,2. Therefore, for &k = 2, both the cutting plane
lower bound method (described in Section 3.3.1) and the current method evaluate
 at pointsthat are in the same proportion with respect to the hyperbola. Since the
first method takes the worst value of two such points while the second considers
only one point, we can expect that for & = 2 the latter is better than the former.

REMARK 13. Asdescribed above, the second lower bound method requires & + 1
evaluations of ¢. However, the algorithm can be adapted in such a way that the
computations of ¢(#1) and ((#?) are made when computing the upper bound (see
Section 3.4 and 4.2).

Unfortunately, the computation of this second lower bound does not extend
easily tothecase k > 3. A natural generalization would beto consider the smplex
defined by the hyperplanes tangent to 7 at the points#/,j = 1,2, ...,k and by
the hyperplane passing through these points. However, as shown by the following
example, some extreme points of this simplex can lie outside the positive orthant,
i.e., inaregion in which the objective function ¢ is not defined.

EXAMPLE 14. Assumethat £ > 2 and let ¢ and b be two positive reals satisfying

a< |\ ——= (29)

(30)
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Let K C R* betheconedefinedby #/,j = 1,2, ..., k where
g_fa ifi#£j
Pl b ifi=j.
Notethat conditions (29) and (30) imply that a # b (actually wehavea < b) which
showsthat K is nondegenerated. '
The equation of the hyperplane passing through the ¢/ is

k

d ti=(k—1a+b, (31)
=1

while the equation of the hyperplane tangent to A at point #/ is
k: . .
> biy % = k. (32)
i=Lizj ¢
The extreme point s” corresponding to the system (31) and (32, 5 # p) is thus
defined by
i (k—21a—(k—21)b ifi=np.

Since (k — 1)a — (k — 2)b = (’“’1)5:# it follows from assumption (29) that
sh < 0, thusthe k extremepointss?, p = 1,2, ..., k arenot in the positive orthant.

This example shows that we must add additional constraints in order to keep
the extreme points of the outer-approximating polytope in the positive orthant.
In order to obtain a tight approximation we can for example add the constraints
defining the cone K. The above continuation of Example 14 shows then that the
resulting polytope may have an exponential number of extreme points (we would
have obtained a similar result by adding the positivity constraints instead of the
constraints defining K).

EXAMPLE 14 (continuation). Recall that the constraints defining our ssimplex are

k
Ztﬁ(%_l)tjzka, i=12... .k (33)
=1
k
St < (k—La+b. (34)
=1

Let us complete it with the constraints defining K. It is easy to verify that these
constraints are

k
oSt — ((k—LDa+b)t; <0, j=1,2,...,k (35)
=1
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Let J1, Jo» be a partition of {1,2,...,k} with J; # (. We claim that the point
t= (tl, to, ..., tk) with

kab(|Jila + b — a)
kablJ1| + (b — a)?(|1| — 1)

ka2b|.J1|

kab|Ja| + (b — a)?(|Ja| — 1)’
is an extreme point of the polytope defined by constraints (33), (34) and (35).
Indeed, we have

b o _ kabl7i|(lhla+b—a+ (k| /)a)

if j €1

(36)
if j € J

D WA EN (R (AR
_ kab|J1|((k — 12)a +b) _ (37)
kabl.J1 + (b — ) (172 — 1)
Clearly since |/1| > 1, poyrrrssrry—g < 1 which showsthat constraint (34)
is satisfied.
For j € Jy, theleft hand of (33) is
kab|J1|(ka + b —a) + ka(a — b)(|J1|la + b — a)
=ka
kablJi| + (b — a)?(|2] — 1)
thus the constraint is satisfied at equality.
For j € J, theleft hand of (33) is
kab|Ji|(ka+b — a)+ka?|Ji|(a —b)  ka[kab|J1|+ (b — a)?|J1|]
= > ka.
kab|Ju|+ (b — a)?(|J2| — 1) kablJu|+(b — a)?(|J2| — 1)
For 5 € Jy, theleft hand of (35) is
kablka+b — a]lalJ1| — (|J1]a+b — a)] kab(a — b)[ka+b — a]
= <0
kablJ1|+ (b — a)?(|J2] — 1) kablJ1|+ (b — a)?(|J2] — 1)

sincea < b. Findly, itisclear that for j € J,, (35) is satisfied at equality.
Sincethere are 28 — 1 nonempty distinct subsets of {1, 2, ..., k}, the polytope
defined by (33)—«(35) has at least 2¥ — 1 extreme points.

Thisexample showsthat the generalization of thesimplicial boundto £ > 3implies
the enumeration of anumber of extreme points that can growth exponentially with
k. Since for each of these points, we have to solve a convex program in R", it
seems unlikely that this method could be efficient for £ > 3.

3.4. UPPER BOUNDS

An upper bound of ¢ over K N H is obtained by evaluating ¢ at a point w, which
is aby-product of the computation of the lower bound.
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If the cutting plane lower bound is used, the point w is the intersection of O
with the hyperbolaH{ where is as defined in Section 3.3.1.

If the simplicial lower bound is used, the point w is defined as the intersection
of 0s% with .

4. A Conical Algorithm
4.1. GENERAL CASE

We present below a conical algorithm, called SOLQCM, which provides an e-
optimal solution for any parameter ¢ > 0. If ¢ = 0, an optimal solution for
problem (GCMP) can be easily deduced using Theorem 3. Otherwise, a minor
modification, discussed at the end of this section, must be made in order to be
able to deduce an e-optimal solution for (GCMP) from an e-optimal solution for

(QCM).

Algorithm SOLQCM
Step O (initialization): select one of the two lower bound methods described in
Section 3.3.
Setp to f where f istheminimum of the optimal values f; of the problems
(F),i=1,2,...,k asdefined in Section 2.
Construct an initial cone K as described in Section 3.1.
Compute the lower bound o (K©).
Set the list £ of subproblemsto { K°}.
Step 1 (subdivision): let K* € agmin{y(K) : K € L}.
Perform a bisection of K*. Let P be the bipartition of K*. Set L «+
(L\{K*})UP.
Step 2 (bounding): for each cone K € P, compute the lower bound o(K). Let
w(K') be the point defined in Section 3.4.
If forsome K € P, p(w(K)) < pthensety «+ p(w(K)) andt «+ w(K).
Step 3 (fathoming): deleteevery cone K € L forwhichp(K) >p—c. If L=

then terminate: % is an e-optimal solution of (QC' M); otherwise return to
Step 1.

THEOREM 15. Algorithm SOLQCM iscorrect and can beinfiniteonlyife = 0.1n
such a case, any cluster point of the sequencet is an -optimal solution of problem
(QCM).

Proof. Let £’ bethe set of coneseither in £ or deleted at someiteration in Step
3. Clearly £’ formsapartition of cone K% thusmin{o(K) : K € L'} < min{e(t) :
t e M} = p*.If st someiteration £ = P thenp—e < min{p(K) : K € L'} < *
which provesthat 7 is an e-optimal solution of problem (QCM).
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Now assume that the algorithm is infinite. Since at each iteration a cone is
subdivided into a finite number of subcones, it must generate an infinite sequence
of nested cones K.

Let " and 7 be the incumbent value and point respectively at iteration h.
Since the sequence " is decreasing and bounded by min;cy, o(t), 2" converges
to alimit @ and consequently, since K° N 7 is a compact set, the sequencefh has
at least one cluster point 7.

Let *,7 = 1,2,...,k be the intersection points of the edges of K" with
the hyperbola H. Since the subdivision process involves only bisections, it is
exhaustive following Theorem 7. Therefore, the sequences (£*/);, converge to a
common limit £*.

If the cutting plane method is used to compute the lower bounds gh = (K hy,
lett" bethepoint £ at iteration h, H" bethehyperplane H;, and s, j = 1,2, ...k
be the intersection point of the edgesof K" with H". Clearly, H* — H* whichis
the hyperplane tangent to { at #* and, for all 7, s/ — #*. Moreover, w" — £*. By
continuity of ¢, we have

min{p(t) :t € H} > hILrgogh = hﬂToo min{e(s"), o(s"?), ..., o(s"*)}
= (")
= Jim_p(w") > 1im (") = (i),

thus is an optimal solution of problem (QC M).

Similarly, if the simplicial lower bound method is used, let s"0 be the point
sY at iteration h. Since, for al j,#" — ¢*, we have Hy,; — H* for al j where
H* is the hyperplane tangent to # at point £*. Since s"° is on the hyperplanes
Hy;,j =1,2,...,k andin the cone K" whose limit is the edge {O#*}, we have
s"0 — t* and w" — t*. By continuity of ¢, we have then

min{o(t) :t € H} > hlim o = lim o(s"0) = ()

—4o00— h—+o00
— i hy > i ™ = (7
pim p(w?) 2 lim o) = o(f),
which shows again that ¢ is an optimal solution of problem (QC M).
Since at Step 3, cones satisfying p(K") > g" — ¢ are deleted, we cannot have
My, o0 (K") = limy,_, 100 " for e > 0. Thus the algorithm cannot beinfinite
ife >0. |

If ¢ is an optimal solution of problem (QCM), then by Theorem 3 the point x; of
G associated with ¢ in the evaluation of (%) is an optimal solution of problem
(GCM P). However, if ¢ isan e-optimal solution of problem (QC' M), (%) isstill
an e-optimal value of problem (GCM P) but z; is not necessarily an e-optimal
point, i.e., a point whose value differs by less than £ from the optimal one.
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To providean e-optimal solution of problem (GC M P), theagorithm SOLQCM
should be modified in the following way: Step 2, the last line should be replaced
by:

If for somek € P, f(zy(x)) < P thensetp < f(zy(x)) T 7y (k)
where z, k) isthe point of G solution of the convex program corresponding
to the evaluation of p(w(K)).

In order to prove the finiteness of the resulting modified algorithm, note that
in the proof of Theorem 15, w" — #* which is an optimal solution of problem
(QCM). Let z,,» bethe point of G associated to w" in the evaluation of (w") :
Tyyh —> Tpe. Thus ¢(t*) = f(mf*) = limy 100 f(zyn) > limpy o f(fh) =
f(Z). Therest of the proof is similar to that of Theorem 15.

Note that the classical lower bound computation method using -y-extensions
(see for example Horst and Tuy [7]) would not be practicable here, due to the
difficulty of evaluating ¢.

Another possible choice for the origin of the coneswould have been to consider
a vertex of the hyperrectangle R°. But then we would have lost the property of
homogeneity when fy = 0 (see Lemma 2), particularly useful in practice to save
some computing time as discussed in the next section.

4.2. SpeciAL CASES

When fy is constant, or without loss of generality when fo = 0, some simplifica-
tions can be made.
First note that the convex program

1&g
min lE ;tifi(w)]

needed to evaluate ¢ at point ¢ is equivalent to

k

min Z tifiz (38)

xEG

since the function y — ¥ isincreasing on [0, +o0). In particular, if the functions
fi,i =212 ...,k arelinear and if G is apolytope, then the optimization problem
(38) reduces to alinear program. Therefore it may be convenient to replace ¢ by
its reduced form:

= mi g Z tifi(z (39)

Also recall that by Lemma 2, ¢ is homogeneous of degree k& when fq isthe null
function. Therefore, the value of ¢ of an entire edge can easily be deduced from the
knowledge of the value at a particular point of this edge. Thisis especially useful
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when the cutting plane lower bound is used since the points to be evaluated are on
edges which usually belong to more than one cone.

If £ = 2, we can aso subdivide the cone K using the point w(K): in dimension
2, this correspondsto a bisection, therefore the proof of Theorem 15 remainsvalid.
Thissubdivision methodis particularly interesting whenthesimplicial lower bound
isused: in such acase, all edges, except those defining theinitial cone intersect #
at a point of the form w(K), the value of which has been calculated at Step 2 in
an attempt to improve the incumbent value. Hence when computing a simplicial
lower bound the only point to evaluateis s° (see Section 3.3.2).

5. Computational Results

Inthissection, we present the results of computational experimentsfor two versions
of algorithm SOLQCM: SOLQCM1 in which the first lower bound is used and
SOLQCM2 in which the second lower bound is used.

We consider test problems similar to those used in the literature. There are of
five types described in Tablel.

Problems of type | are similar to those considered by Thoai [26] for & = 2.
Problems of type Il are similar to those considered by Kuno et al. [17]. Their
parameters are defined as follows:

— a9 al, ..., o arerandomly generated vectorswith all components belonging
to [0, 1].

— A = (a;5) € R™ xR" isarandomly generated matrix with elements belonging
to [—1,1].

—b=(b1,b,...,b,) isarandomly generated vector such that

n
b, = Z a;; + 2bg
j=1
with by being arandomly generated real in [0, 1] fori = 1,2,...,m.
- D' € R" x R" are diagonal matrices with diagonal elements d} randomly
generated in [0,1].

The two programs have been implemented in C and run on a SUN-SPARC10/51
station (135.5 Mips, 27.3 Mflops, 64 Mram). We use the packages of CPLEX [3]
for solving the linear programs and MINOS [20] (coded in FORTRAN) for the convex
ones. Most of the time, the optimal solution of the previously solved (linear or
convex) subproblem was used as starting point for the current subproblem (only
one over 1000 subproblems was solved from the beginning).

The precision e was set to 10~°. However, as suggested in Section 4.2, if fo is
the null function (i.e., for problems of types | and I1), the precision is evaluated
with respect to the reduced form ¢’ defined in (39).

Also, if k = 2, we subdivided the cones K using the points w(K) rather than
use bisections of ratio .
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Tablel. Test Problems

Typel: TypelO:
k k
min H(aim) mina’z + H(aiz)
i=1 i=1
subject to : subject to :
Az <b Az <b
x> 0. x> 0.
Typell: TypellO:
k k
min(atz) H(aim +2z'D'z) mina’z + ( H (o'z+z'D'x)
1=2 =2
subject to : subject to :
Az <b Az <b
x> 0. x> 0.
Typell10:

k
min(a’z + z'D°z) + H(aiz +2z'D'z)
i=1

subject to :

k
j—1
ity
= 7

(—2+ZI—?>
=1

Az <b
x> 0.

15
< 1000

Tj

Table 1. Number of iterations (nb.iter) for the cutting
plane lower bounds

series 2,120,120 3,120,120 4,120,120

SOLQCM1a 23.2 270.8 8066.0
SOLQCM1b 23.2 250.9 4001.7
SOLQCM1c 22.9 2334 2726.2

Finally, to easily access both the cone of smallest lower bound (Step 1 of the
algorithm) and of greatest lower bound (Step 3), we used a min-max heap (see
Atkinson et al. [1]) to store the cones.

For each set (= series) of parameters k, m, n, we solved 10 problems.

Table 1 comparesthe number of iterationsin algorithm SOLQCM for the three
variants of the first lower bound (see Section 3.3). The 10 problems considered
are of type |. We observe that the best performances are obtained for SOLQCM 1c.
Other experiments have shown that the results are not better if the hyperplane is
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Tablelll. Problems of type .

series nb_iter max_c nb_conv cpu_tot
(k,m,n) © o Iz o © o Jz o

2,80,100 23.0 1.56 33 0.48 76.0 4.69 520 021
2,100,100 22.6 1.07 34 0.52 74.8 322 7.32 0.63
2,100,120 224 212 31 0.32 74.2 6.36 9.32 0.56
2,120,120 229 213 34 0.84 75.7 6.39 13.43 153

3,80,100 249.4 1996 220 2.58 758.2 59.87 25.74 4.78
3,100,100 247.0 2156 210 291 751.0 64.68 34.72 3.76
3,100,120 258.6 2695 219 2.85 785.8 80.85 44.39 8.59
3,120,120 2334 16.79 196 2.37 710.2 50.38 56.33 10.51
3,120,140 256.6 2760 220 2.67 779.8 82.81 7439 1390
3,150,140 225.6 11.35 183 2.06 686.8 34.06 98.19 1367
3,150,160 237.3 1828 20.1 3.03 721.9 5483 12507 20091
3,200,180 230.7 1327 18.0 1.56 702.1 3980 24194 1923

orZ0O0rOoOwm

480,100 30464 364.64 2186 4254 91522 109393 25090 37.56
4,100,100 2780.7 25234 1947 1811 83551 757.01 33829 62.56
4,100,120 2953.1 373.04 2161 1999 88723 111912 456.20 59.17
4,120,120 2726.2 30725 180.1 19.01 81916 92177 516.68 67.53

580,100 124633.6 15190.68 9352.2 1369.42 373916.8 45572.03 11628.49 3015.24

SOL 280,100 13.8 1.62 17 0.48 326 324 391 0.32
QCM 2,100,100 13.0 125 16 0.52 31.0 2.49 5.96 157
2 2100,120 13.3 134 18 0.42 31.6 2.67 7.52 0.83
2,120,120 134 2.07 17 0.67 318 413 10.10 0.81

chosen to minimize the volume of the set S (see [6]). In the sequel, we consider
only this variant ¢) of the first lower bound method.

Tables Il and VI showsthe results for problems of typesl, I, 10, [10 and 1110
respectively.

We observethat for £ = 2, SOLQCM2 outperforms SOLQCM1c with respect
to al indicators and for each size and type of problems. In particular, the number
of convex subproblems to be solved (nb_conv) is everywhere more than half less
for SOLQCM2 than for SOLQCM1c. Also for the problems of types 10, 110 and
110 (Tables V, VI and V1), the computing time cpu_tot is divided by afactor 2.

As noted by other authors, the results are very sensitive to the size k of the
reduced (in this paper) quasi concave optimization problem. For fixed k&, the number
of iterations nb_iter, the maximum number of cones in the min-max heap max_c
(i.e., the maximum number of subproblems stored at any iteration) and the number
of convex subproblems nb_conv do not increase significantly with the size m x n,
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Table V. Problems of typell.

253

series nb_iter max_c nb_conv cpu_tot
(k,m,n)  p o Iz o Iz o Iz o
2,80,100 26.3 1.06 36 052 85.9 3.18 42.63 6.77
2,100,100 26.0 1.49 38 042 85.0 4.47 54.65 8.70
S 2,100,120 26.8 1.32 39 057 87.4 3.95 79.80 6.83
(e} 2,120,120 25.7 1.77 32 042 84.1 530 101.17 11.51
L
Q 3,80,100 2944 2305 224 1.65 892.2 69.14 348.03 80.76
C 3100100 2923 1890 216 143 885.9 56.69 496.15 96.56
M 3,100,120 3079 2671 226 263 932.7 80.13 732.03 151.27
1 3120,120 3028 26.08 223 183 917.4 7825 775.07 76.97
c
430,20 3304.7 457.81 2478 50.25 9925.1 137343 227.78 46.94
450,40 3342.7 399.81 230.6 47.73 10039.1 1199.44 85499 195.13
450,60 35749 346.85 255.0 46.94 107357 1040.55 1430.05 267.59
460,80 3975.8 616.42 291.8 66.51 11938.4 1849.27 3200.88 1011.47
SOL 2,80,100 16.4 1.78 21 0.32 37.8 3.55 23.94 2.60
QCM 2,100,100 15.2 0.92 20 0.00 354 1.84 32.28 4.50
2 2,100,120 16.8 1.55 21 032 38.6 3.10 47.96 4.26
2,120,120 15.3 0.82 2.0 0.00 35.6 1.65 61.36 6.60
Table V. Problems of type 0.
series nb_iter max_c nb_conv cpu_tot
(k, m,n) Iz o Iz o Iz o Jz o
S 2,80,100 26.6 1.65 32 042 166.6 9.88 38.32 7.82
(@] 2,100,100 26.8 1.32 33 048 167.8 7.90 55.82 6.18
L 2,100,120 27.3 1.70 36 070 170.8 10.22 78.81 12.67
Q 2,120,120 278 215 37 082 1738 1290 10713 19.06
C
M 380,100 3319 3067 232 336 26652 24535 480.26 5249
1 3,100,100 311.8 2365 20.0 194 25044 189.23 628.58 72.17
c 3,100,120 346.1 46.69 232 4.16 27788 37353 887.67 184.92
3,120,120 3181 24.01 202 175 25548 19205 112414 143.25
SOL 280,100 15.1 197 15 053 66.4 7.88 17.87 4.60
QCM 2,100,100 14.7 142 1.4 0.52 64.8 5.67 24.58 351
2 2,100,120 16.1 2.13 21 032 70.4 8.53 39.36 6.29
2,120,120 16.7 2.00 20 0.67 72.8 8.01 49.00 7.53
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Table V1. Problems of type110.

series nb_iter max_c nb_conv cpu_tot
(k, m,n) Iz o Iz o Iz o Jz o

280,100 314 165 42 063 1954 9.88 8112 1306
2,100,100 299 110 36 052 1864 6.60 10475 1547
2,100,120 314 143 36 052 1954 858 14592 2619
2,120,120 313 170 37 048 1948 1022 18997 29.36

3,80,100 4278 3392 230 189 34314 27139 137839 304.81
3,100,100 4146 1968 228 132 33258 15741 167558 233.25
3,100,120 438.1 3510 229 110 35138 280.78 2359.82 420.98
3,120,120 407.0 1917 220 156 3265.0 15333 276234 341.22

or00roOm

SOL 280,100 194 250 20 0.00 836 10.01 33.84 5.05
QCM 2100100 175 071 20 0.00 76.0 2.83 43.83 515
2 2,100,120 188 187 20 0.00 81.2 7.49 61.62 10.72
2,120,120 184 158 20 0.00 79.6 6.31 79.18 7.28

Table VII. Problems of type I110.

series nb_iter max_c nb_conv cpu_tot
(k,m,n)  p o Jz o Jz o Iz o

280,100 299 166 34 052 185.4 998 53375 66.11
2,100,100 303 116 33 048 187.8 6.96 646.79  67.89
2,100,120 312 204 37 048 1932 1226 1016.63 100.68
2,120,120 313 106 34 070 1938 6.36 112239 13261

380,100 3512 1370 196 222 28176 109.61 701392 894.30
3,100,100 3499 1279 20.6 272 28072 10234 7856.17 990.56
3,100,120 3584 1641 202 193 28752 131.25 12704.01 1366.17
3,120,120 3711 1844 20.7 116 29768 147.49 13816.79 1532.32

or00roOm

4,30,20 3505.3 217.33 1824 1881 35063.0 2173.35 3589.84 714.44
450,40 3651.2 202.22 1851 6.56 36522.0 2022.17 14382.77 2059.55

SOL 280,100 19.3 164 18 042 82.2 6.55 25860 3518
QCM 2,100,100 18.7 1.83 18 042 79.8 732 31241 2825
2 2,100,120 19.0 1.70 19 032 81.0 6.80 44998  50.03
2,120,120 196 217 19 032 834 8.68 541.06  49.03

thus the computing time cpu_tot is essentially proportional to the time needed to
solve a convex problem of the same size. We use 1, to denote the average values,
and o to denote the standard deviations.
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When comparing for example Tables |1l and V, we observe that the number
of iterations nb_iter remains about the same but that the number of convex sub-
problems nb_conv and the computing time cpu_tot increase more dramatically. The
increase of the number of convex subproblems can be mainly explained by the fact
that the homogeneity property cannot be used anymore for problems of type 10.
Thisimpliesin turn anincrease of the computing time, which can also be explained
by thefact that for problems of type | the evaluation of ¢ involvesalinear program
solved by cpLEX while for problems of type 10 it involves a convex nonlinear
program solved by MINOS.

The results obtained in Table VII show that the addition of two convex con-
straints to a set of linear constraints together with the introduction of a convex
function fp already increase the computing times by a factor of about 6 for algo-
rithm SOLQCM 1c and about 7 for algorithm SOLQCM2.

It is not easy to compare these results with those of the literature since the
experiments are made on different problems and on different machines, e.g.,
Thoai [26] solved particular instances of problems similar to those of type | with
(k,m,n) = (2,70, 120) within about 1950 seconds on aiBM-PS2 (Modell 88, with
programs written in FORTRAN; Kuno et al. [17] solved problems similar to those of
typell with (k, m,n) = (3,200, 180) within 914 secondson average on asSuUN4/75
(with programs written in C).
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