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Abstract. We present a new method for minimizing the sum of a convex function and a product
of k nonnegative convex functions over a convex set. This problem is reduced to a k-dimensional
quasiconcave minimization problem which is solved by a conical branch-and-bound algorithm.
Comparative computational results are provided on test problems from the literature.
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1. Introduction

We consider the optimization of Generalized Convex Multiplicative Programming
problems of the form:

(GCMP ) min
x2G

 
f(x) = f0(x) +

kY
i=1

fi(x)

!

where k � 2, the functions fi are convex on R
n(i = 0; 1; . . . ; k), and G is a

nonempty compact convex subset of Rn such that:

8x 2 G fi(x) � 0 i = 1; 2; . . . ; k: (1)

This problem has many applications, e.g., in microeconomics [5], VLSI chip design
[19], bond portfolio optimization [8] and multiobjective programming [4].

It is well known (see e.g., Konno and Kuno [10]) that the product of convex
functions need not be (quasi)convex thus the objective function f of problem
(GCMP ) may have many local minima. Moreover, except if the function f0 is
constant and the functions fi(i = 1; 2; . . . ; k) are linear, the objective function is
not quasiconcave in general.
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Over the last five years, several particular cases of problem (GCMP ) have
been investigated, especially when k = 2.

The Linear Multiplicative Programming problem (i.e., f0 constant and f1; f2

linear) has been studied by Konno and Kuno [10] who proposed a parametric
simplex method to solve it. A slightly more general method, taking advantage of a
low degree of nonlinearity, has been suggested by Tuy and Tam [29]. The parametric
simplex approach has then been generalized by Konno et al. [14] to solve a special
case of the General Linear Multiplicative Programming problem (i.e., f0 quadratic
and f1; f2 linear). Recently, Schaible and Sodini [24] used this same approach (but
with different optimality conditions) for the case f0; f1; f2 linear. Two methods
have been proposed for the case where f0 is convex and f1 and f2 are linear: (i) a
discrete approximation algorithm by Konno and Kuno [9]; (ii) a branch-and-bound
algorithm by Muu and Tam [21] where the branching takes place in an interval
of R and the bounding corresponds to a relaxation. Moreover, Kuno and Konno
[15] designed a branch-and-bound method using an underestimating function for
problem (GCMP ) where k = 2 (which could be easily extended for k = 3).

More recently, Konno et al. [12] considered the problem of minimizing the sum
of p products of two convex functions, which includes the problem (GCMP )when
k = 2 as a particular case. They proposed a reduction to a concave minimization
problem with 2p variables, which they solved by an outer approximation method.

Problems with up to 350 linear constraints and 300 variables have been solved
when f0; f1; f2 are linear by Konno et al. [14] and up to 130 linear constraints
and 100 variables when f0 is a convex quadratic function and f1; f2 are linear by
Konno and Kuno [15].

For k greater than 2, only the Convex Multiplicative Programming problem
(f0 = 0) has been considered. Thoai [26] proposes a reduction to the minimization
of a quasiconcave function depending only on k variables. This last problem is
then solved by an outer approximation method. Kuno et al. [17] propose an-
other reduction to a concave minimization problem with k variables, the objective
function value of which is determined by solving a convex minimization problem.
Their computational experiments show that the resulting algorithm is reasonably
efficient for k � 4.

Related problems such as minimization of fractional functions or minimization
with a multiplicative constraint can be found in [9, 13, 14, 16, 18, 22, 23, 25, 27,
30]. For a recent review on multiplicative programming, see Konno and Kuno [11].

The purpose of this paper is to design a new algorithm to solve problem
(GCMP ). It is organized as follows. In Section 2, we convert (GCMP ) to a
quasiconcave minimization problem in a k-dimensional space. New bounds and
branchings are discussed in Section 3. In Section 4, the results of the previous sec-
tion are embedded in a conical branch-and-bound algorithm for solving low dimen-
sional quasiconcave minimization problems. Computational results are reported in
Section 5.
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2. Reduction to Quasiconcave Minimization

In this section, we show how to reduce the generalized convex multiplicative
problem (GCMP ) to a quasiconcave minimization one when functions fi(i =
1; 2; . . . ; k) are positive. It is a generalization of the reduction to a concave mini-
mization problem, proposed by Kuno et al. [17], of the minimization of a product
of k convex functions, i.e., problem (GCMP ) when f0 is a constant function.

Whenever discussing the particular case where f0 is a constant function, we
will assume, without loss of generality, that f0 is the null function, i.e., f0(x) = 0
for all x 2 G.

We will also assume that:

8x 2 G fi(x) > 0 i = 1; 2; . . . ; k: (2)

This condition is not restrictive if we are interested in "-optimal solutions (i.e.,
points with values differing from the optimal one by less than " > 0) of problem
(GCMP ). Indeed, let ~f be the global minimum of f(x) overGwith the additional
constraint

Q
k

i=1 fi(x) = 0. We can then show that either ~f is an "-optimal value of
problem (GCMP ), or all optimal solutions of problem (GCMP ) belong to the
convex setG0 = G\fx : f0(x) � ~f � "g. Moreover, we have

Q
k

i=1 fi(x) > 0 for
all x 2 G0.

Note first that the value ~f can be obtained through the solution of k convex
problems:

(Pi) ~fi = minff0(x) : fi(x) � 0 and x 2 Gg

for i = 1; 2; . . . ; k, i.e., ~f = mini=1;2;...;k
~fi.

Let x� be an optimal solution of problem (GCMP ) with value f�. If ~f is not
an "-optimal value of problem (GCMP ) we have ~f �f� > ". Since f0(x

�) � f�,
it follows that f0(x

�) < ~f � ", hence x� 2 G0.
Now let x0 be a point of G0 and assume that there exists an index j such that

fj(x
0) = 0. Then x0 is a feasible solution of problem (Pj), hence f0(x

0) � ~fj � ~f .
Thusx0 does not satisfy the constraint f0(x) � ~f�" ofG0, which is a contradiction.
Obviously, G0 is still a compact convex set.

Consequently, an "-optimal solution of problem (GCMP ) with non negative
functions can be easily obtained by comparing ~f with the optimal (or an "-optimal)
solution of problem (GCMP ) with positive functions.

Let H = ft 2 Rk+ :
Q

k

i=1 ti = 1g denote the portion of hyperbola of equationQ
k

i=1 ti = 1 contained in the positive orthant and T = ft 2 Rk+ :
Q

k

i=1 ti � 1g be
the (convex) set delimited byH.

LEMMA 1. For any positive real numbers f1; f2; . . . ; fk we have:

min
t2H

 
1
k

kX
i=1

fiti

!k

=
kY
i=1

fi; (3)
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and the minimum point t� of (3) satisfies

t�1f1 = t�2f2 = � � � = t�
k
fk =

 
kY
i=1

fi

! 1
k

: (4)

Proof. It follows easily from Kuhn–Tucker conditions. Indeed, associating mul-
tiplier �0 with the constraint

kY
i=1

ti = 1 (5)

and multiplier �j with the non negativity constraint

tj � 0; (6)

for j = 1; 2; . . . ; k, the Karush–Kuhn–Tucker conditions lead to:

fj

 
1
k

kX
i=1

fiti

!k�1

� �0

kY
i=1;i6=j

ti � �j = 0 (7)

�jtj = 0 (8)

�j � 0 (9)

for all j = 1; 2; . . . ; k.
Note that since none of the non negativity constraints can be satisfied as equal-

ities, all points satisfying constraints (5) and (6) are regular.
Multiplying equation (7) by tj , and using (5) and (8), we obtain

tjfj

 
1
k

kX
i=1

fiti

!k�1

= �0

kY
i=1

ti + �jtj = �0 j = 1; 2; . . . ; k: (10)

Summing the k equalities of (10), we get

�0 =

 
1
k

kX
i=1

fiti

!k

: (11)

Since the coefficients fi and the variables ti are positive, 1
k

P
k

i=1 fiti cannot be
equal to 0. Thus, substituting �0 by its value obtained in (11) in equation (10), it
follows

tjfj =
1
k

kX
i=1

fiti j = 1; 2; . . . ; k: (12)

Making the product of these k last equalities, we obtain

kY
i=1

fi =

 
1
k

kX
i=1

fiti

!k
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which, together with equalities (12), completes the proof.

For every t 2 Rk+ , define the function ' as:

'(t) = min
x2G

8<
:f0(x) +

 
1
k

kX
i=1

tifi(x)

!k
9=
; : (13)

Since the functions fi(i = 1; 2; . . . ; k) are convex, the positive linear combination
1
k

P
k

i=1 tifi is also convex. Since y ! yk defines a nondecreasing and convex

function on [0;+1) and since f0 is also convex, it follows that f0+
�

1
k

P
k

i=1 tifi

�
k

is convex. Thus the value of '(t) can be determined by solving a convex program.
Other properties of ' are given below.

LEMMA 2. The function ' is quasiconcave, continuous, increasing and, if f0 is
the null function, homogeneous of degree k, on any compact set D of Rk+ .

Proof. For any fixed x 2 G; t ! P
k

i=1 tifi(x) is an affine function. On
the other hand, the function y ! yk is nondecreasing for y 2 [0;+1), hence�P

k

i=1 tifi(x)
�
k

is a quasiconcave function of t (see, e.g., Avriel et al. [2, p. 57
Proposition 3.2]). It follows that, for any fixed x 2 G and any 
 2 R the set

Cx(
) =

8<
:t 2 Rk+ :

 
1
k

kX
i=1

tifi(x)

!k

� 
 � f0(x)

9=
;

is convex. We then deduce that for any 
 2 R the set ft 2 R
k

+ : '(t) � 
g =T
x2GCx(
) is convex. This proves the quasiconcavity of '(t).

Let  (t; x) = f0(x) +
�

1
k

P
k

i=1 tifi(x)
�
k

. Since the fi; i = 0; 1; . . . ; k are
continuous and since G is compact,  is uniformly continuous overD �G. Thus,
for any fixed " > 0, there exists � > 0 such that

k(t0; x0)� (t00; x00)k � � ) k (t0; x0)�  (t00; x00)k � ":

Now let t0 and t00 be such that kt0 � t00k � �. Let x0 2 arg min'(t0) and x00 2
arg min'(t00) (these points exist since G is a non-empty compact set).

On one hand,

'(t0)� '(t00) = min
x2G

 (t0; x)�min
x2G

 (t00; x) �  (t0; x00)�  (t00; x00) � "

(the last inequality holds since k(t0; x00)� (t00; x00)k = kt0 � t00k � �):
On the other hand,

'(t0)� '(t00) �  (t0; x0)�  (t00; x0) � �":
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Thus j'(t0) � '(t00)j � " which proves the continuity of '. Now, let x�t be the
optimal solution of the convex program corresponding to '(t). For any t � t0 �
0; t 6= t0 we have

'(t) = f0(x
�

t
) +

 
1
k

kX
i=1

tifi(x
�

t
)

!k

> f0(x
�

t
) +

 
1
k

kX
i=1

t0
i
fi(x

�

t
)

!k

� '(t0);

hence '(t) is increasing.
The homogeneity property is trivial.

THEOREM 3. Under assumption (2), the problem (GCMP ) is equivalent to the
quasiconcave minimization problem

(QCM) min
t2T

'(t)

in the following sense: if t� is an optimal solution of problem (QCM) and if x� is
a corresponding point of G with respect to (13), then x� is an optimal solution of
problem (GCMP ). Moreover, the following relations hold:

t�
i
=

0
@ kY
j=1

fj(x
�)

1
A

1
k

fi(x�)
; i = 1; 2; . . . ; k (14)

f(x�) = '(t�): (15)

Conversely, if x� is an optimal solution of problem (GCMP ), the value t� deduced
from the relation (14) corresponds to an optimal solution of problem (QCM) and
the relation (15) holds.

Proof. Let x� and f� respectively be the optimal solution and value of problem
(GCMP ), and t� and '� be the optimal solution and value of problem (QCM).

Let xt� be a point ofG such that '(t�) = f0(xt�)+
�

1
k

P
k

i=1 t
�
i
fi(xt�)

�
k

(such
a point exists by definition of '). Then, by using Lemma 1,

'� = '(t�) = f0(xt�) +

 
1
k

kX
i=1

t�i fi(xt�)

!k

� f0(xt�) + min
t2H

 
1
k

kX
i=1

tifi(xt�)

!k

= f(xt�) � f�: (16)

Now, let tx� be the point obtained from x� by (14). Then

'� � '(tx�) = min
x2G

8<
:f0(x) +

 
kY
i=1

fi(x
�)

! 
1
k

kX
i=1

fi(x)

fi(x�)

!k
9=
;

� f(x�) = f� (17)
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where the last inequality is obtained by setting x to x�. From (16) and (17), it
follows that f� = '�.

Thus f0(xt�)+
�

1
k

P
k

i=1 t
�
i
fi(xt�)

�
k

= f(xt�) = f�, which shows thatxt� is an

optimal solution of problem (GCMP ) and that (t�; xt�) satisfies (14) (using again
Lemma 1). Similarly, '(tx�) = '� which shows that tx� is an optimal solution of
problem (QCM).

It follows that minimizing f over G is equivalent to minimizing ' overH.
Since ' is increasing (Lemma 2), we deduce that the minimum of ' over T

belongs to its boundary H. Since T is a convex set, (GCMP ) is then equivalent
to the quasiconcave minimization of '(t) over T .

COROLLARY 4. Let f
i
> 0 and f i be a lower and upper bound respectively of

function fi over G for i = 1; 2; . . . ; k. Let t� be an optimal solution of problem
(QCM). We have

ti � t�i � ti i = 1; 2; . . . ; k (18)

where

ti =

0
@Y
j 6=i

f
j

1
A

1
k

(f i)
1� 1

k

and ti =

0
@Y
j 6=i

f j

1
A

1
k

(f
i
)1� 1

k

i = 1; 2; . . . ; k:

Note that if ti = ti for some i and k � 2, the functions fj(j = 1; 2; . . . ; k) are
constant over G, thus problem (GCMP ) can be reduced to the convex program
minx2G f0(x). Indeed,

ti
ti

=

0
BBBBBBBB@

0
@Y
j 6=i

f
j

1
A

1
k

(f i)
1� 1

k

1
CCCCCCCCA

0
BB@ (f

i
)1� 1

k�Q
j 6=i f j

� 1
k

1
CCA =

 
f
i

f i

!1� 2
k kY
j=1

 
f
j

f j

! 1
k

� 1

with the equality holding if and only if each term of the product is equal to 1, i.e.,
if f

j
= f j for j = 1; 2; . . . ; k.

From now on, we assume that 0 < ti < ti for all i 2 f1; 2; . . . ; kg.

3. Bounding and Branching Operations

In order to be able to design a conical branch-and-bound algorithm to solve problem
(QCM), i.e., mint2T '(t), we study below its various features: the initialization
which includes the definition of a cone containing at least one optimal solution
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Figure 1. Construction of the initial cone (k = 2).

(Section 3.1); the rules of the subdivision (Section 3.2); the computation of lower
(Section 3.3) and upper bounds (Section 3.4).

3.1. CONSTRUCTION OF AN INITIAL CONE

Optimal solutions t� of (QCM) are contained in the k-dimensional rectangle

R0 = ft 2 Rk : t � t � tg (19)

where t = (t1; t2; . . . ; tk) and t = (t1; t2; . . . ; tk) are as defined in Corollary 4.
LetK0 be a first cone vertexed at twith edges defined by the k adjacent extreme

points of t inR0. Let t̂j be the intersection of the jth edge ofK0 with the hyperbola
H for j = 1; 2; . . . ; k. Such points always exist since on one hand ti > 0 for all
i 2 f1; 2; . . . ; kg and on the other hand

Q
k

i=1 ti =
Q

k

i=1(f i=f i)
1� 1

k < 1 for k � 2.
We next considerK0, the cone vertexed atO with edges (Ot̂j); j = 1; 2; . . . ; k;

see Figure 1 for an illustration when k = 2.
Note that for k � 3, the hyperrectangleR0 is not always included in the coneK0.

Indeed, consider the following example with k = 3. Assume that f
i
=
p

2
3
(i =

1; 2; 3) and f i =
p

3
3
(i = 1; 2; 3). Then ti =

2
3 and ti = 3

2 for i = 1; 2; 3; and
1=
Q

k

i=1 ti =
27
8 . It follows that

t̂1 =

�
9
4
;

2
3
;

2
3

�
t̂2 =

�
2
3
;

9
4
;

2
3

�
t̂3 =

�
2
3
;

2
3
;

9
4

�
:
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Consider now the vertex t0 = (t1; t2; t3) = (2
3 ;

3
2 ;

3
2) of R0. It is easy to check that

t0 =
2

817

�
�4t̂1 + 211t̂2 + 211t̂3

�

which shows that t0 lies outside K0.

PROPOSITION 5. The cone K0 contains the set of optimal solutions of problem
(QCM).

Proof. We first show that t belongs to K0. By definition, the points t̂j lie both
on the jth edge of K0, i.e., can be written

t̂j = t+ �je
j (20)

where ej is the jth unit vector and �j � 0, and on the hyperbolaH, i.e., satisfy

kY
i=1

t̂
j

i
=
tj + �j

tj

kY
i=1

ti = 1:

Setting � =
Q

k

i=1 ti =
Q

k

i=1(f i=f i)
1� 1

k , we get

�j =

�
1
�
� 1

�
tj j = 1; 2; . . . ; k: (21)

Combining equations (20) and (21), we deduce:

t =
1

k + 1
�
� 1

kX
j=1

t̂j (22)

i.e., that t belongs to the cone K0 (as � < 1).
As K0 is convex and contains the points t̂1; t̂2; . . . ; t̂k (by definition) and t, it

also contains the simplex S induced by these points.
From Corollary 4, all optimal solutions of problem (QCM) lie on K0 \ H. It

therefore remains to show that K0 \H � S.
Let t 2 K0 \H. It satisfies the following system of equations:8>>><
>>>:

Q
k

i=1 ti = 1

t = t+
kX

j=1

�j(t̂
j � t)

with � = (�1; �2; . . . ; �k) � 0.
By using (20) and (21), it follows that

t =
kX

j=1

�
1 + �j

�
1
�
� 1

��
tje

j :
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Since t belongs to the hyperbolaH, we have then

1 =
kY
i=1

ti = �
kY

j=1

�
1 + �j

�
1
�
� 1

��
� �

0
@1 +

kX
j=1

�j

�
1
�
� 1

�1A

which shows that
P

k

j=1 �j � 1 (since 1
�
� 1 > 0). Thus t = (1 �Pk

j=1 �j)t +P
k

j=1 �j t̂
j , i.e., can be expressed as a convex combination of t and t̂j(j =

1; 2; . . . ; k). This completes the proof.

The construction of K0 requires the knowledge of t. However, in order to be able
to compute t, we need lower and upper bound on each function of the product in f .

Positive lower bounds f
i

can be easily obtained through the solution of the
following convex problems

min
x2G

fi(x)

for i = 1; 2; . . . ; k.
The computation of upper bounds requires more effort. If the function fi is linear,

an upper bound f i can be obtained by solving the following convex problem

max
x2G

fi(x):

If the function fi is not linear, let � be a simplex containing G. Without loss
of generality, we can assume that G is contained in the positive orthant. Then a
simplex containing G can be defined as � = fx 2 Rn :

P
n

i=1 xi � b;xi � 0; i =
1; 2; . . . ; ng where b is the optimal value of the convex program

max
x2G

kX
i=1

xi:

Then we can derive an upper bound fi by solving the convex maximization problem

max
x2�

fi(x):

Since � is a polytope whose vertices can easily be computed, this last optimization
problem can be easily solved.

3.2. SUBDIVISION

We propose to consider bisection subdivisions. We recall below the principles of
such subdivisions. The reader is referred to Horst and Tuy [7] and Tuy [28] for
more details.

Let H0 be a hyperplane intersecting each edge of K0, e.g., the hyperplane of
equation

P
k

i=1 ti = 1. At a current iteration, let K � K0 be a cone vertexed at the
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origin O and with k independent edges. let U = K \H0 = convfu1; u2; . . . ; ukg
be the section of K by the hyperplane H0: U is called the base of K . Let w be an
arbitrary point of U such that

w =
kX
i=1

�iu
i;

kX
i=1

�i = 1; �i � 0 (i = 1; 2; . . . ; k): (23)

Let I = fi : �i > 0g. For each i 2 I , define Ui as the simplex of vertices
u1; . . . ; ui�1; w; ui+1; . . . ; uk. It is easy to verify that the set of simplices fUi :
i 2 Ig forms a partition of the simplex U , it is called a simplicial subdivision. Let
�(U) denote the diameter of the simplex U , i.e., the length of its longest edge. If w
belongs to a longest edge of U , i.e., if w = �up + (1� �)uq with 0 < � � 1

2 and
kup � uqk = �(U), then the partition is called a bisection of ratio �.

DEFINITION 6 (see Horst and Tuy [7, p. 135]). A simplicial subdivision is exhaus-
tive if any infinite sequence of nested simplices Uh satisfies limh!+1 �(Uh) = 0:

THEOREM 7 (see, e.g., Tuy [28, p. 21]). A subdivision process consisting exclu-
sively of bisections of ratio 0 < � � 1

2 , for some fixed �, is exhaustive.

Obviously, any partition ofU induces a partition ofK . If the simplexU is bisected,
we say that the cone K is bisected. If the subdivision of U is exhaustive, we say
that the subdivision of K is exhaustive.

3.3. LOWER BOUNDS

We propose two ways to compute lower bounds: the first one applies to the general
case and requires k evaluations of ', i.e., the solution of k convex programs in Rn ;
the second one requires only one evaluation of ' but does not apply for k � 3.

3.3.1. Cutting Plane Method

The computation of the first lower bound is based on the following result:

PROPOSITION 8. Let K � R
k

+ be a cone vertexed at O. Let H be a hyperplane
separating O from K \ T and let sj(j = 1; 2; . . . ; k) be the intersection points of
the edges of K with H . Then

minf'(s1); '(s2); . . . ; '(sk)g

is a lower bound of ' over K \ T .
Proof. Let Q be the polyhedron defined as the intersection of K with the

half-space delimited by H and not containing O. Clearly Q contains K \ T .
Since ' is increasing, its minimum over Q is attained at convfs1; s2; . . . ; skg.
As ' is quasiconcave, it follows that the minimum of ' over Q is equal to
minf'(s1); '(s2); . . . ; '(sk)g.
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Let t̂ be a point ofH. We denote by H
t̂

the hyperplane tangent to the hyperbolaH
at point t̂. It can easily be checked that

H
t̂
=

(
t 2 Rk :

kX
i=1

ti

t̂i
= k

)
:

Clearly, H
t̂

separates O from K \ T , thus yields a lower bound by Proposition
8. For convenience, let us define a = ( 1

t̂1
; 1
t̂2
; . . . ; 1

t̂k
): Then H

t̂
= ft 2 R

k :

at = kg. Since the minimum of ' over T is attained at a point of H, a good
criteria for selecting the hyperplane H

t̂
may be to minimize the volume of the set

S = K \ ft : at � k;Qk

i=1 ti � 1g.

PROPOSITION 9. A necessary condition for the hyperplaneH = ft 2 Rk : at =
kg to minimize the volume of S is

ai =
1

kX
j=1

t̂
j

i

at̂j

; i = 1; 2; . . . ; k: (24)

Proof. Denote by Ĥ = ft 2 Rk : ât = 1g the hyperplane passing through the
points t̂j; j = 1; 2; . . . ; k. Then S = S1n(S2 [ S3) where

S1 = K \ ft 2 Rk : ât � 1g;
S2 = K \ ft 2 Rk : at � kg;

S3 = K \
(
t 2 Rk : ât � 1;

kY
i=1

ti � 1

)
:

Since only the set S2 depends upon the hyperplane H , minimizing the volume of
S is equivalent to maximizing the volume of S2. The vertices of this simplex are
O and sj = �j t̂

j with �j = k

at̂j
for j = 1; 2; . . . ; k. Thus

V ol(S2) = �k

����det
�

0 �1t̂
1 �2t̂

2 � � � �k t̂
k

1 1 1 1 1

�����
= �kjdet(�1t̂

1 �2t̂
2 � � � �k t̂

k)j

= �k

 
kY
i=1

�i

!
jdet(t̂1t̂2 � � � t̂k)j
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where �k is a constant for fixed k. Since jdet(t̂1; t̂2; . . . ; t̂k)j does not depend upon a,
the hyperplaneH minimizing the volume of S is obtained by solving the following
problem

(V P )

min v(a) =
kY

j=1

(at̂j)

s.t.

8><
>:

kY
i=1

ai = 1 (25)

a � 0: (26)

Noting that no ai can be null, the Karush–Kuhn–Tucker conditions lead to

kX
j=1

t̂
j

`

�
v(a)

at̂j

�
� �

0
BBBBB@

kY
i=1

ai

a`

1
CCCCCA = 0; ` = 1; 2; . . . ; k (27)

�

 
kY
i=1

ai � 1

!
= 0: (28)

Using (25), relation (27) gives

�

v(a)
= a`

kX
j=1

t̂
j

`

at̂j
; ` = 1; 2; . . . ; k:

After summation, we obtain �

v(a)
= 1, which concludes the proof.

Note that the hyperplane that minimizes the volume of S is tangent to H at a
point of K . Indeed relation (24) can be written

t̂ =
kX

j=1

t̂j

at̂j

where the at̂j ; j = 1; 2; . . . ; k are positive since the components of a and t̂j are
positive. For k = 2, such a hyperplane can be more precisely characterized (see
Figure 2 for an illustration).

COROLLARY 10. For k = 2, the hyperplane that minimizes the volume of S is

the hyperplane tangent to H at point t̂ = (
q
t̂11t̂

2
1;
q
t̂12t̂

2
2). Moreover, if t̂ denotes

the barycentre of t̂1 and t̂2, then t̂ is the intersection of Ot̂ with H.
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Figure 2. Lower bound computing (method 1).

Proof. Using relation (24) of Proposition 9, we have

1
a1

=
t̂11

a1t̂
1
1 + a2t̂

1
2

+
t̂21

a1t̂
2
1 + a2t̂

2
2

=
t̂11(a1t̂

2
1 + a2t̂

2
2) + t̂21(a1t̂

1
1 + a2t̂

1
2)

(a1t̂
1
1 + a2t̂

1
2)(a1t̂

2
1 + a2t̂

2
2)

:

After simplification, we obtain (t̂11t̂
2
1)a

2
1 = (t̂12t̂

2
2)a

2
2, i.e., (t̂11t̂

2
1)t̂

2
2 = (t̂12t̂

2
2)t̂

2
1. Since

t̂1t̂2 = 1 = t̂11t̂
1
2 = t̂21t̂

2
2, it follows that the only positive solution is t̂1 =

q
t̂11t̂

2
1

and t̂2 =
q
t̂12t̂

2
2. Using the equalities t̂11t̂

1
2 = 1 = t̂21t̂

2
2, it is then easy to verify that

t̂ = (
2
p
t̂
1
1 t̂

1
2

t̂
1
1+t̂

2
1
)t̂.

Considering this last result, we define three variants for the computation of a lower
bound that differ by the choice of t̂:
(a) t̂ is defined by

t̂i =
k

vuuut kY
j=1

t̂
j

i
; i = 1; 2; . . . ; k:

(b) t̂ is the intersection with H of Ot̂, where t̂ is the barycentre 1
k

P
k

j=1 t̂
j of the

points t̂j .
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Figure 3. Lower bound computing (method 2).

(c) t̂ is the intersection with H of Ou, where u is the barycentre of the points uj ,
intersection of Ot̂j with the hyperplaneH0 defined in Section 3.2.

Note that for k � 3, the corresponding hyperplanes will not anymore minimize the
volume of S since a = ( 1

t̂1
; 1
t̂2
; . . . ; 1

t̂k
) does not in general satisfy (24).

3.3.2. Simplicial Method

The computation of the second lower bound is valid only when k = 2. It exploits
a particular simplex (see Figure 3 for an illustration):

PROPOSITION 11. Let K � R
2
+ be a cone origined at O. Assume that its edges

intersect the hyperbolaH at t̂1 and t̂2 respectively. Let H
t̂1 and H

t̂2 be the hyper-
planes tangent to H at t̂1 and t̂2 respectively. Then these hyperplanes are inter-
secting at an unique point s0 2 K , and a lower bound of ' over K \H is

minf'(t̂1); '(t̂2); '(s0)g:

Proof. Let Ĥ be the hyperplane passing through t̂1 and t̂2. By convexity of
T , the half-space delimited by H and containing O contains K \ H. Since H

t̂1

and H
t̂2 are supporting hyperplanes, K \ H is therefore included in the simplex

S defined by the hyperplanes H , H
t̂1 and H

t̂2 . It follows that a lower bound of '
overK \H is mint2S '(t). As ' is quasiconcave, it is equal to the minimum of '
over the extreme points of S.
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These extreme points are t̂1, t̂2 and the intersection point s0 of the hyperplanes
H
t̂1 and H

t̂2 . If t̂1 = (�; 1
�
) and t̂2 = (�; 1

�
), the equations of the hyperplanes H

t̂1

and H
t̂2 are:

s1

�
+ �s2 = 2

s1

�
+ �s2 = 2:

This last system has an unique solution

s0 =

�
2��
�+ �

;
2

�+ �

�
=

��

(�+ �)2 (t̂
1 + t̂2)

which clearly belongs to K .

REMARK 12. Let t̂0 be the intersection point of Os0 with the hyperbola H.

Then s0 = (
2
p
��

�+� )t̂0. On the other hand, with the above notation and with the

hyperplane of Corollary 10, it can be checked that the points sj of Proposition 8

satisfy sj = (
2
p
��

�+� )t̂j for j = 1; 2. Therefore, for k = 2, both the cutting plane
lower bound method (described in Section 3.3.1) and the current method evaluate
' at points that are in the same proportion with respect to the hyperbola. Since the
first method takes the worst value of two such points while the second considers
only one point, we can expect that for k = 2 the latter is better than the former.

REMARK 13. As described above, the second lower bound method requires k+1
evaluations of '. However, the algorithm can be adapted in such a way that the
computations of '(t̂1) and '(t̂2) are made when computing the upper bound (see
Section 3.4 and 4.2).

Unfortunately, the computation of this second lower bound does not extend
easily to the case k � 3. A natural generalization would be to consider the simplex
defined by the hyperplanes tangent to H at the points t̂j; j = 1; 2; . . . ; k and by
the hyperplane passing through these points. However, as shown by the following
example, some extreme points of this simplex can lie outside the positive orthant,
i.e., in a region in which the objective function ' is not defined.

EXAMPLE 14. Assume that k > 2 and let a and b be two positive reals satisfying

a <
k

s
k � 2
k � 1

(29)

b =
1

ak�1 : (30)
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Let K � R
k be the cone defined by t̂j ; j = 1; 2; . . . ; k where

t̂
j

i
=

�
a if i 6= j

b if i = j.

Note that conditions (29) and (30) imply that a 6= b (actually we have a < b) which
shows that K is nondegenerated.

The equation of the hyperplane passing through the t̂j is

kX
i=1

ti = (k � 1)a+ b; (31)

while the equation of the hyperplane tangent toH at point t̂j is

kX
i=1;i6=j

ti

a
+
tj

b
= k: (32)

The extreme point sp corresponding to the system (31) and (32, j 6= p) is thus
defined by

s
p

i
=

�
b if i 6= p

(k � 1)a� (k � 1)b if i = p.

Since (k � 1)a� (k � 2)b = (k�1)ak�(k�2)
ak�1 , it follows from assumption (29) that

sp
p
< 0, thus the k extreme points sp; p = 1; 2; . . . ; k are not in the positive orthant.

This example shows that we must add additional constraints in order to keep
the extreme points of the outer-approximating polytope in the positive orthant.
In order to obtain a tight approximation we can for example add the constraints
defining the cone K . The above continuation of Example 14 shows then that the
resulting polytope may have an exponential number of extreme points (we would
have obtained a similar result by adding the positivity constraints instead of the
constraints defining K).

EXAMPLE 14 (continuation). Recall that the constraints defining our simplex are

kX
i=1

ti +

�
a

b
� 1

�
tj � ka; j = 1; 2; . . . ; k (33)

kX
i=1

ti � (k � 1)a+ b: (34)

Let us complete it with the constraints defining K . It is easy to verify that these
constraints are

a
kX
i=1

ti � ((k � 1)a+ b)tj � 0; j = 1; 2; . . . ; k: (35)
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Let J1; J2 be a partition of f1; 2; . . . ; kg with J1 6= ;. We claim that the point
t = (t1; t2; . . . ; tk) with

tj =

8>><
>>:

kab(jJ1ja+ b� a)
kabjJ1j+ (b� a)2(jJ1j � 1)

if j 2 J1

ka2bjJ1j
kabjJ1j+ (b� a)2(jJ1j � 1)

; if j 2 J2

(36)

is an extreme point of the polytope defined by constraints (33), (34) and (35).
Indeed, we have

kX
j=1

tj =
kabjJ1j(jJ1ja+ b� a+ (k � jJ1j)a)

kabjJ1j+ (b� a)2(jJ1j � 1)

=
kabjJ1j((k � 1)a+ b)

kabjJ1j+ (b� a)2(jJ1j � 1)
: (37)

Clearly since jJ1j � 1; kabjJ1j

kabjJ1j+(b�a)2(jJ1j�1) � 1, which shows that constraint (34)
is satisfied.

For j 2 J1; the left hand of (33) is

kabjJ1j(ka+ b� a) + ka(a� b)(jJ1ja+ b� a)
kabjJ1j+ (b� a)2(jJ1j � 1)

= ka

thus the constraint is satisfied at equality.
For j 2 J2, the left hand of (33) is

kabjJ1j(ka+b� a)+ka2jJ1j(a� b)
kabjJ1j+(b� a)2(jJ1j � 1)

=
ka[kabjJ1j+(b� a)2jJ1j]
kabjJ1j+(b� a)2(jJ1j � 1)

> ka:

For j 2 J1, the left hand of (35) is

kab[ka+b� a][ajJ1j � (jJ1ja+b� a)]
kabjJ1j+(b� a)2(jJ1j � 1)

=
kab(a� b)[ka+b� a]

kabjJ1j+(b� a)2(jJ1j � 1)
< 0

since a < b. Finally, it is clear that for j 2 J2, (35) is satisfied at equality.
Since there are 2k � 1 nonempty distinct subsets of f1; 2; . . . ; kg, the polytope

defined by (33)–(35) has at least 2k � 1 extreme points.

This example shows that the generalization of the simplicial bound to k � 3 implies
the enumeration of a number of extreme points that can growth exponentially with
k. Since for each of these points, we have to solve a convex program in R

n , it
seems unlikely that this method could be efficient for k � 3.

3.4. UPPER BOUNDS

An upper bound of ' over K \H is obtained by evaluating ' at a point w, which
is a by-product of the computation of the lower bound.
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If the cutting plane lower bound is used, the point w is the intersection of Ot̂
with the hyperbolaH where t̂ is as defined in Section 3.3.1.

If the simplicial lower bound is used, the point w is defined as the intersection
of Os0 with H.

4. A Conical Algorithm

4.1. GENERAL CASE

We present below a conical algorithm, called SOLQCM, which provides an "-
optimal solution for any parameter " � 0. If " = 0, an optimal solution for
problem (GCMP) can be easily deduced using Theorem 3. Otherwise, a minor
modification, discussed at the end of this section, must be made in order to be
able to deduce an "-optimal solution for (GCMP) from an "-optimal solution for
(QCM).

Algorithm SOLQCM

Step 0 (initialization): select one of the two lower bound methods described in
Section 3.3.

Set' to ~f where ~f is the minimum of the optimal values ~fi of the problems
(Pi); i = 1; 2; . . . ; k as defined in Section 2.

Construct an initial cone K0 as described in Section 3.1.

Compute the lower bound '(K0).

Set the list L of subproblems to fK0g.
Step 1 (subdivision): let K� 2 arg minf'(K) : K 2 Lg.

Perform a bisection of K�. Let P be the bipartition of K�. Set L  
(LnfK�g) [ P .

Step 2 (bounding): for each cone K 2 P , compute the lower bound '(K). Let
w(K) be the point defined in Section 3.4.

If for someK 2 P ,'(w(K)) < ' then set' '(w(K)) and t w(K).

Step 3 (fathoming): delete every coneK 2 L for which '(K) � '� ". If L = ;
then terminate: ' is an "-optimal solution of (QCM); otherwise return to
Step 1.

THEOREM 15. Algorithm SOLQCM is correct and can be infinite only if " = 0. In
such a case, any cluster point of the sequence t is an "-optimal solution of problem
(QCM).

Proof. Let L0 be the set of cones either in L or deleted at some iteration in Step
3. ClearlyL0 forms a partition of coneK0 thus minf'(K) : K 2 L0g � minf'(t) :
t 2 Hg = '�. If at some iteration L = ; then '�" � minf'(K) : K 2 L0g � '�
which proves that t is an "-optimal solution of problem (QCM).
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Now assume that the algorithm is infinite. Since at each iteration a cone is
subdivided into a finite number of subcones, it must generate an infinite sequence
of nested cones Kh.

Let 'h and t
h be the incumbent value and point respectively at iteration h.

Since the sequence 'h is decreasing and bounded by mint2H '(t); 'h converges
to a limit ' and consequently, since K0 \H is a compact set, the sequence th has
at least one cluster point t.

Let t̂hj; j = 1; 2; . . . ; k be the intersection points of the edges of Kh with
the hyperbola H. Since the subdivision process involves only bisections, it is
exhaustive following Theorem 7. Therefore, the sequences (t̂hj)h converge to a
common limit t̂�.

If the cutting plane method is used to compute the lower bounds 'h = '(Kh),
let t̂h be the point t̂ at iteration h,Hh be the hyperplaneH

t̂h
and shj; j = 1; 2; . . . ; k

be the intersection point of the edges of Kh with Hh. Clearly, Hh ! H� which is
the hyperplane tangent toH at t̂� and, for all j; shj ! t̂�. Moreover, wh ! t̂�. By
continuity of ', we have

minf'(t) : t 2 Hg � lim
h!1

'h = lim
h!+1

minf'(sh1); '(sh2); . . . ; '(shk)g

= '(t̂�)

= lim
h!+1

'(wh) � lim
h!+1

'(t
h
) = '(t);

thus t is an optimal solution of problem (QCM).
Similarly, if the simplicial lower bound method is used, let sh0 be the point

s0 at iteration h. Since, for all j; t̂hj ! t̂�, we have H
t̂hj
! H� for all j where

H� is the hyperplane tangent to H at point t̂�. Since sh0 is on the hyperplanes
H
t̂hj
; j = 1; 2; . . . ; k and in the cone Kh whose limit is the edge fOt̂�g, we have

sh0 ! t̂� and wh ! t̂�. By continuity of ', we have then

minf'(t) : t 2 Hg � lim
h!+1

'h = lim
h!+1

'(sh0) = '(t̂�)

= lim
h!+1

'(wh) � lim
h!+1

'(t
h
) = '(t);

which shows again that t is an optimal solution of problem (QCM).
Since at Step 3, cones satisfying '(Kh) � 'h � " are deleted, we cannot have

limh!+1 '(Kh) = limh!+1 'h for " > 0. Thus the algorithm cannot be infinite
if " > 0.

If t is an optimal solution of problem (QCM), then by Theorem 3 the point x
t

of
G associated with t in the evaluation of '(t) is an optimal solution of problem
(GCMP ). However, if t is an "-optimal solution of problem (QCM), '(t) is still
an "-optimal value of problem (GCMP ) but x

t
is not necessarily an "-optimal

point, i.e., a point whose value differs by less than " from the optimal one.
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To provide an "-optimal solution of problem (GCMP ), the algorithm SOLQCM
should be modified in the following way: Step 2, the last line should be replaced
by:

If for some k 2 P; f(xw(K)) < ' then set '  f(xw(K)) and x  xw(K)

where xw(K) is the point ofG solution of the convex program corresponding
to the evaluation of '(w(K)).

In order to prove the finiteness of the resulting modified algorithm, note that
in the proof of Theorem 15, wh ! t̂� which is an optimal solution of problem
(QCM). Let x

wh be the point of G associated to wh in the evaluation of '(wh) :
x
wh ! x

t̂�
. Thus '(t�) = f(x

t̂�
) = limh!+1 f(x

wh) � limh!+1 f(xh) =
f(x). The rest of the proof is similar to that of Theorem 15.

Note that the classical lower bound computation method using 
-extensions
(see for example Horst and Tuy [7]) would not be practicable here, due to the
difficulty of evaluating '.

Another possible choice for the origin of the cones would have been to consider
a vertex of the hyperrectangle R0. But then we would have lost the property of
homogeneity when f0 = 0 (see Lemma 2), particularly useful in practice to save
some computing time as discussed in the next section.

4.2. SPECIAL CASES

When f0 is constant, or without loss of generality when f0 = 0, some simplifica-
tions can be made.

First note that the convex program

min
x2G

"
1
k

kX
i=1

tifi(x)

#k

needed to evaluate ' at point t is equivalent to

min
x2G

kX
i=1

tifi(x) (38)

since the function y ! yk is increasing on [0;+1). In particular, if the functions
fi; i = 1; 2; . . . ; k are linear and if G is a polytope, then the optimization problem
(38) reduces to a linear program. Therefore it may be convenient to replace ' by
its reduced form:

'0(t) = min
x2G

kX
i=1

tifi(x): (39)

Also recall that by Lemma 2, ' is homogeneous of degree k when f0 is the null
function. Therefore, the value of ' of an entire edge can easily be deduced from the
knowledge of the value at a particular point of this edge. This is especially useful
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when the cutting plane lower bound is used since the points to be evaluated are on
edges which usually belong to more than one cone.

If k = 2, we can also subdivide the coneK using the pointw(K): in dimension
2, this corresponds to a bisection, therefore the proof of Theorem 15 remains valid.
This subdivision method is particularly interesting when the simplicial lower bound
is used: in such a case, all edges, except those defining the initial cone intersectH
at a point of the form w(K), the value of which has been calculated at Step 2 in
an attempt to improve the incumbent value. Hence when computing a simplicial
lower bound the only point to evaluate is s0 (see Section 3.3.2).

5. Computational Results

In this section, we present the results of computational experiments for two versions
of algorithm SOLQCM: SOLQCM1 in which the first lower bound is used and
SOLQCM2 in which the second lower bound is used.

We consider test problems similar to those used in the literature. There are of
five types described in Table I.

Problems of type I are similar to those considered by Thoai [26] for k = 2.
Problems of type II are similar to those considered by Kuno et al. [17]. Their
parameters are defined as follows:

– �0; �1; . . . ; �k are randomly generated vectors with all components belonging
to [0; 1]:

– A = (aij) 2 Rm�Rn is a randomly generated matrix with elements belonging
to [�1; 1].

– b = (b1; b2; . . . ; bm) is a randomly generated vector such that

bi =
nX

j=1

aij + 2b0

with b0 being a randomly generated real in [0; 1] for i = 1; 2; . . . ;m.
– Di 2 R

n � R
n are diagonal matrices with diagonal elements di

j
randomly

generated in [0,1].
The two programs have been implemented in C and run on a SUN-SPARC10/51

station (135.5 Mips, 27.3 Mflops, 64 Mram). We use the packages of CPLEX [3]
for solving the linear programs and MINOS [20] (coded in FORTRAN) for the convex
ones. Most of the time, the optimal solution of the previously solved (linear or
convex) subproblem was used as starting point for the current subproblem (only
one over 1000 subproblems was solved from the beginning).

The precision " was set to 10�6. However, as suggested in Section 4.2, if f0 is
the null function (i.e., for problems of types I and II), the precision is evaluated
with respect to the reduced form '0 defined in (39).

Also, if k = 2, we subdivided the cones K using the points w(K) rather than
use bisections of ratio 1

2 .



GENERALIZED CONVEX MULTIPLICATIVE PROGRAMMING 251

Table I. Test Problems

Type I: Type I0:

min
kY
i=1

(�ix)

subject to :
Ax � b

x � 0:

min�0
x+

kY
i=1

(�ix)

subject to :
Ax � b

x � 0:

Type II: Type II0:

min(�1
x)

kY
i=2

(�ix+ x
t
D

i
x)

subject to :
Ax � b

x � 0:

min�0
x+ (�1

x)

kY
i=2

(�ix+ x
t
D

i
x)

subject to :
Ax � b

x � 0:

Type III0:

min(�0
x+ x

t
D

0
x) +

kY
i=1

(�ix+ x
t
D

i
x)

subject to :�����x1 +

kX
j=2

j � 1
j

xj

�����
1:5

� 1000

 
�2 +

kX
j=1

xj

j

!2

� 100

Ax � b

x � 0:

Table II. Number of iterations (nb iter) for the cutting
plane lower bounds

series 2,120,120 3,120,120 4,120,120

SOLQCM1a 23.2 270.8 8066.0
SOLQCM1b 23.2 250.9 4001.7
SOLQCM1c 22.9 233.4 2726.2

Finally, to easily access both the cone of smallest lower bound (Step 1 of the
algorithm) and of greatest lower bound (Step 3), we used a min-max heap (see
Atkinson et al. [1]) to store the cones.

For each set (= series) of parameters k;m; n, we solved 10 problems.
Table II compares the number of iterations in algorithm SOLQCM for the three

variants of the first lower bound (see Section 3.3). The 10 problems considered
are of type I. We observe that the best performances are obtained for SOLQCM1c.
Other experiments have shown that the results are not better if the hyperplane is
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Table III. Problems of type I.

series nb iter max c nb conv cpu tot
(k;m; n) � � � � � � � �

2,80,100 23.0 1.56 3.3 0.48 76.0 4.69 5.20 0.21
2,100,100 22.6 1.07 3.4 0.52 74.8 3.22 7.32 0.63

S 2,100,120 22.4 2.12 3.1 0.32 74.2 6.36 9.32 0.56
O 2,120,120 22.9 2.13 3.4 0.84 75.7 6.39 13.43 1.53
L
Q 3,80,100 249.4 19.96 22.0 2.58 758.2 59.87 25.74 4.78
C 3,100,100 247.0 21.56 21.0 2.91 751.0 64.68 34.72 3.76
M 3,100,120 258.6 26.95 21.9 2.85 785.8 80.85 44.39 8.59
1 3,120,120 233.4 16.79 19.6 2.37 710.2 50.38 56.33 10.51
c 3,120,140 256.6 27.60 22.0 2.67 779.8 82.81 74.39 13.90

3,150,140 225.6 11.35 18.3 2.06 686.8 34.06 98.19 13.67
3,150,160 237.3 18.28 20.1 3.03 721.9 54.83 125.07 20.91
3,200,180 230.7 13.27 18.0 1.56 702.1 39.80 241.94 19.23

4,80,100 3046.4 364.64 218.6 42.54 9152.2 1093.93 250.90 37.56
4,100,100 2780.7 252.34 194.7 18.11 8355.1 757.01 338.29 62.56
4,100,120 2953.1 373.04 216.1 19.99 8872.3 1119.12 456.20 59.17
4,120,120 2726.2 307.25 180.1 19.01 8191.6 921.77 516.68 67.53

5,80,100 124633.6 15190.68 9352.2 1369.42 373916.8 45572.03 11628.49 3015.24

SOL 2,80,100 13.8 1.62 1.7 0.48 32.6 3.24 3.91 0.32
QCM 2,100,100 13.0 1.25 1.6 0.52 31.0 2.49 5.96 1.57

2 2,100,120 13.3 1.34 1.8 0.42 31.6 2.67 7.52 0.83
2,120,120 13.4 2.07 1.7 0.67 31.8 4.13 10.10 0.81

chosen to minimize the volume of the set S (see [6]). In the sequel, we consider
only this variant c) of the first lower bound method.

Tables III and VII shows the results for problems of types I, II , I0, II0 and III0
respectively.

We observe that for k = 2, SOLQCM2 outperforms SOLQCM1c with respect
to all indicators and for each size and type of problems. In particular, the number
of convex subproblems to be solved (nb conv) is everywhere more than half less
for SOLQCM2 than for SOLQCM1c. Also for the problems of types I0, II0 and
III0 (Tables V, VI and VII), the computing time cpu tot is divided by a factor 2.

As noted by other authors, the results are very sensitive to the size k of the
reduced (in this paper) quasiconcave optimization problem. For fixed k, the number
of iterations nb iter, the maximum number of cones in the min-max heap max c
(i.e., the maximum number of subproblems stored at any iteration) and the number
of convex subproblems nb conv do not increase significantly with the size m� n,
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Table IV. Problems of type II.

series nb iter max c nb conv cpu tot
(k;m; n) � � � � � � � �

2,80,100 26.3 1.06 3.6 0.52 85.9 3.18 42.63 6.77
2,100,100 26.0 1.49 3.8 0.42 85.0 4.47 54.65 8.70

S 2,100,120 26.8 1.32 3.9 0.57 87.4 3.95 79.80 6.83
O 2,120,120 25.7 1.77 3.2 0.42 84.1 5.30 101.17 11.51
L
Q 3,80,100 294.4 23.05 22.4 1.65 892.2 69.14 348.03 80.76
C 3,100,100 292.3 18.90 21.6 1.43 885.9 56.69 496.15 96.56
M 3,100,120 307.9 26.71 22.6 2.63 932.7 80.13 732.03 151.27
1 3,120,120 302.8 26.08 22.3 1.83 917.4 78.25 775.07 76.97
c

4,30,20 3304.7 457.81 247.8 50.25 9925.1 1373.43 227.78 46.94
4,50,40 3342.7 399.81 230.6 47.73 10039.1 1199.44 854.99 195.13
4,50,60 3574.9 346.85 255.0 46.94 10735.7 1040.55 1430.05 267.59
4,60,80 3975.8 616.42 291.8 66.51 11938.4 1849.27 3200.88 1011.47

SOL 2,80,100 16.4 1.78 2.1 0.32 37.8 3.55 23.94 2.60
QCM 2,100,100 15.2 0.92 2.0 0.00 35.4 1.84 32.28 4.50

2 2,100,120 16.8 1.55 2.1 0.32 38.6 3.10 47.96 4.26
2,120,120 15.3 0.82 2.0 0.00 35.6 1.65 61.36 6.60

Table V. Problems of type I0.

series nb iter max c nb conv cpu tot
(k;m; n) � � � � � � � �

S 2,80,100 26.6 1.65 3.2 0.42 166.6 9.88 38.32 7.82
O 2,100,100 26.8 1.32 3.3 0.48 167.8 7.90 55.82 6.18
L 2,100,120 27.3 1.70 3.6 0.70 170.8 10.22 78.81 12.67
Q 2,120,120 27.8 2.15 3.7 0.82 173.8 12.90 107.13 19.06
C
M 3,80,100 331.9 30.67 23.2 3.36 2665.2 245.35 480.26 52.49
1 3,100,100 311.8 23.65 20.0 1.94 2504.4 189.23 628.58 72.17
c 3,100,120 346.1 46.69 23.2 4.16 2778.8 373.53 887.67 184.92

3,120,120 318.1 24.01 20.2 1.75 2554.8 192.05 1124.14 143.25

SOL 2,80,100 15.1 1.97 1.5 0.53 66.4 7.88 17.87 4.60
QCM 2,100,100 14.7 1.42 1.4 0.52 64.8 5.67 24.58 3.51

2 2,100,120 16.1 2.13 2.1 0.32 70.4 8.53 39.36 6.29
2,120,120 16.7 2.00 2.0 0.67 72.8 8.01 49.00 7.53
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Table VI. Problems of type II0.

series nb iter max c nb conv cpu tot
(k;m; n) � � � � � � � �

S 2,80,100 31.4 1.65 4.2 0.63 195.4 9.88 81.12 13.06
O 2,100,100 29.9 1.10 3.6 0.52 186.4 6.60 104.75 15.47
L 2,100,120 31.4 1.43 3.6 0.52 195.4 8.58 145.92 26.19
Q 2,120,120 31.3 1.70 3.7 0.48 194.8 10.22 189.97 29.36
C
M 3,80,100 427.8 33.92 23.0 1.89 3431.4 271.39 1378.39 304.81
1 3,100,100 414.6 19.68 22.8 1.32 3325.8 157.41 1675.58 233.25
c 3,100,120 438.1 35.10 22.9 1.10 3513.8 280.78 2359.82 420.98

3,120,120 407.0 19.17 22.0 1.56 3265.0 153.33 2762.34 341.22

SOL 2,80,100 19.4 2.50 2.0 0.00 83.6 10.01 33.84 5.05
QCM 2,100,100 17.5 0.71 2.0 0.00 76.0 2.83 43.83 5.15

2 2,100,120 18.8 1.87 2.0 0.00 81.2 7.49 61.62 10.72
2,120,120 18.4 1.58 2.0 0.00 79.6 6.31 79.18 7.28

Table VII. Problems of type III0.

series nb iter max c nb conv cpu tot
(k;m; n) � � � � � � � �

2,80,100 29.9 1.66 3.4 0.52 185.4 9.98 533.75 66.11
S 2,100,100 30.3 1.16 3.3 0.48 187.8 6.96 646.79 67.89
O 2,100,120 31.2 2.04 3.7 0.48 193.2 12.26 1016.63 100.68
L 2,120,120 31.3 1.06 3.4 0.70 193.8 6.36 1122.39 132.61
Q
C 3,80,100 351.2 13.70 19.6 2.22 2817.6 109.61 7013.92 894.30
M 3,100,100 349.9 12.79 20.6 2.72 2807.2 102.34 7856.17 990.56
1 3,100,120 358.4 16.41 20.2 1.93 2875.2 131.25 12704.01 1366.17
c 3,120,120 371.1 18.44 20.7 1.16 2976.8 147.49 13816.79 1532.32

4,30,20 3505.3 217.33 182.4 18.81 35063.0 2173.35 3589.84 714.44
4,50,40 3651.2 202.22 185.1 6.56 36522.0 2022.17 14382.77 2059.55

SOL 2,80,100 19.3 1.64 1.8 0.42 82.2 6.55 258.60 35.18
QCM 2,100,100 18.7 1.83 1.8 0.42 79.8 7.32 312.41 28.25

2 2,100,120 19.0 1.70 1.9 0.32 81.0 6.80 449.98 50.03
2,120,120 19.6 2.17 1.9 0.32 83.4 8.68 541.06 49.03

thus the computing time cpu tot is essentially proportional to the time needed to
solve a convex problem of the same size. We use � to denote the average values,
and � to denote the standard deviations.
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When comparing for example Tables III and V, we observe that the number
of iterations nb iter remains about the same but that the number of convex sub-
problems nb conv and the computing time cpu tot increase more dramatically. The
increase of the number of convex subproblems can be mainly explained by the fact
that the homogeneity property cannot be used anymore for problems of type I0.
This implies in turn an increase of the computing time, which can also be explained
by the fact that for problems of type I the evaluation of ' involves a linear program
solved by CPLEX while for problems of type I0 it involves a convex nonlinear
program solved by MINOS.

The results obtained in Table VII show that the addition of two convex con-
straints to a set of linear constraints together with the introduction of a convex
function f0 already increase the computing times by a factor of about 6 for algo-
rithm SOLQCM1c and about 7 for algorithm SOLQCM2.

It is not easy to compare these results with those of the literature since the
experiments are made on different problems and on different machines, e.g.,
Thoai [26] solved particular instances of problems similar to those of type I with
(k;m; n) = (2; 70; 120) within about 1950 seconds on a IBM-PS2 (Modell 88, with
programs written in FORTRAN; Kuno et al. [17] solved problems similar to those of
type II with (k;m; n) = (3; 200; 180) within 914 seconds on average on a SUN4/75
(with programs written in C).
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